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General Introduction

It's the Easter weekend. The sun has finally reappeared, the trees are starting to turn
green again, and you have an extra free day. Time for a spring renovation. With
some trepidation you head to your nearest Swedish furniture megastore, seemingly
along with the rest of the country. You scrap and bump your way through the hordes,
overwhelmed by all the billboards and colours, looking for a new night stand. Finally,
you get to the other side of the checkout queue, put the box in the back of the car,
and head back home. Relief.

Unfortunately, the relief doesn’t last long. In the few remaining hours of daylight, you
try to assemble the night stand as fast as possible and with as little frustration as
possible. So you open the box, spread the screws, bolts, et cetera out on the floor
(this might looR like Figure 1), and consult the first step of the instruction manual...

Up until this point you, the reader, will probably recognise the experience. What
comes next, however, is most likely to be the point where our experiences start to
diverge. Do you memorise the appearance of a single screw, search for it, place it
aside, and then repeat that process for all required screws? Or do you memorise two,
or three, or even four screws at once? How much time do you spend memorising each
screw? Which screw(s) do you start with? How often do you refresh your memory by
looking back at the instruction manual? In other words: How do we interact with our
environment, taking into account the richness of stimuli and the limitations of our
memory?

When, where, and how we make eye movements to interact with the external world
and our memory is the main topic that | investigated in this dissertation — and even
the not-so-attentive reader will notice that the instruction manual is a recurring
example throughout. In this General Introduction, | will start by providing a primer
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Figure 1: An instruction manual and a pile of hardware.
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on eye movements and visual working memory, in which | will outline the background
information which readers unfamiliar with the subject at hand might find helpful
throughout the rest of this dissertation. Then, | will introduce Chapters 1, 2, 3, and 4
(which make up Part I: Memory in context), and Chapters 5 and 6 (which make up Part
[Il: Individual- and state-dependent influences on eye movements). | will integrate
my findings and discuss the theoretical and practical implications of my research in
the General Discussion.

Primer

Eye movements

We, humans, make on average around two to four eye movements per second (Hen-
derson & Hollingworth, 1998). Spread out over sixteen waking hours, that counts up
to more than a hundred thousand eye movements every single day. What's more, we
don’t just make random eye movements; almost all of them are made purposefully,
even if we're not aware of it.

Why do we make eye movements? Let's start at the foundation.

When you or | look at a screw, light from the external world (bouncing off of that
screw) comes in through our pupils, and then falls onto the retina at the back of our
eyes. From there, signals are sent to the back of the brain, which eventually forms
those signals into a coherent picture and allows us to see the screw’. However, there
is actually only a small part of the retina, called the fovea, which has the highest
acuity (sharpness) of our visual system. Spreading out from the fovea, visual acuity
decreases, and details get blurrier. As a result, we arrive at the biggest reason to
make eye movements; we need them to survive. Our eyes must keep moving around
in order to take in the world around us, make out details, detect dangers, explore,
and so on (Findlay & Gilchrist, 2003; O'Regan, 1992; Schiller, 1998; van Lieshout et al.,
2020).

Having established why we move our eyes, we should next discuss how we move
our eyes. Eye movements can be split into three main types: fixations, saccades and
smooth pursuits — and these can be categorised by the speed and distance of the
eye's rotation in its socket (Dodge & Cline, 1901; Hessels et al,, 2018)2. (1) Fixations are
periods of relative rest, during which the eye is mostly still, and thus retinal input
remains mostly the same3. Fixations last at least 50 milliseconds (1/20 of a second),
but can last more than a second — and it is during these periods that we usually aim
our fovea at the object that we want to see. When the eyes are still, we can process
the light that lands on our retina with high detail, and the longer we maintain fixation,
the more detail we can gather about the external world (Henderson & Hollingworth,
1998; Theeuwes et al,, 1998; Vogel et al., 2006). (2) Fixations are alternated by fast,

"For the sake of brevity, this is an enormously simplified version of how vision works. See e.g., Schiller
(1998) for a more detailed account.

2|t can be argued that there are more types of eye movements (e.g., microsaccades, corrective saccades).
I have limited the description to the types which are analysed in this dissertation

30ur eyes are rarely ever fully still, but during fixations they only move very small distances (Engbert &
Kliegl, 2003; Rolfs, 2009).
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ballistic movements called saccades. During these saccades, we can gather very little
information from the external world (except for some blur; Latour, 1962), and thus
we mainly use saccades to transition between different points of fixation (Findlay
& Gilchrist, 2003; Melcher & Colby, 2008). (3) Finally, there is one more type of eye
movement that we will discuss here. Smooth pursuits are less common, because we
can only make them when we are tracking an object that is moving relative to our
head. When our eyes follow a moving car, or when we rotate our head while looking
at this word, our eyes can rotate smoothly, but relatively slowly, in their sockets.
Smooth pursuits are therefore a sort of hybrid between fixations and saccades - we
can keep foveating and processing an object while moving our eyes (Dodge, 1903;
Robinson, 1965).

However, simply fixating an object is not sufficient to gather information. For the light
that enters our eye to actually be processed, we also need visual attention (James,
1890). Attention can be described as a sort of flashlight. In this metaphor, the world
around us is a dark room, and we can only see wherever we shine our flashlight. This
flashlight has a narrow beam, and so - just like our eyes — we need to move the
flashlight around in order to process the details of the dark room. Note that attention
and eye movements are not necessarily always at the same location; we can overtly
(while foveating) as well as covertly (without foveating) attend information (Posner,
1980). Back in the non-metaphorical world, we thus need visual attention for our
brain to actually process information from the external world and conclude 'l am
looking at a screw!"

Visual working memory

Once we have fixated and attended a screw, we can use visual working memory (VWM)
to temporarily store, manipulate, and use visual representations in order to guide
our actions (Baddeley & Hitch, 1974). VWM is used in a myriad of situations, but | will
provide an example in the context of visual search. For example, when the instruction
manual shows you an image of a screw, you can store the image’s appearance in VWM.
Then, while actively maintaining the visual representation of the screw in memory,
you can use its features (such as shape and colour; Findlay, 1997) as a template to
find that particular screw in the pile on the floor. To this end, you first create an
attentional priority map of your environment; a sort of heatmap which highlights
locations where visual input is similar to your internal template (Wolfe, 2021; Zelinsky
& Bisley, 2015, see Figure 2 for an illustration). You then move your attention and
gaze around the pile, mostly towards items that have a high priority in this map. With
every fixation that you make, you compare what you're looking at to the internal VWM
template representation of the screw (J. Palmer et al., 2000). If you decide that it's a
different item (perhaps a nail), you fixate the next object, and so on, until you find
the correct screw. Once you have found a match, you can pick it up and use it to
build your furniture.
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Figure 2: A graphical representation of a possible priority map, ranging from low similarity (red)
to high similarity (yellow) to the template in visual working memory.

Part I: Visual working memory in context

In our daily lives — whether we're at a sports match, in a shopping centre, or in
the comfort of our own home — we are constantly surrounded by an incredibly
rich visual environment. There can be people, plants, screens, chairs, billboards,
bikes, and so on, all within view. However, quite often we don’t notice whether
something in our surroundings has changed after we looked away from it briefly
(Simons & Levin, 1997), highlighting that we are actually aware of very little of our
surroundings at any given time. In part, this is due to the fact that we need to
actively attend visual information in order to process it enough to form a sufficient
internal representation (Neisser & Becklen, 1975; Rensink et al., 1997). Attention is
a limited resource though, which allows us to only attend certain details of our
surroundings at a time (James, 1890; Kahneman, 1973; Simons, 1996). Because of
this bottleneck in attentional processing, we spend much of our days attending
external information, while constantly having to be selective about what information
we attend and what information we ignore. Furthermore, in order to detect changes
in scenes, we need to encode and maintain an internal visual representation of what
an object looked like in order to be able to compare it to other objects. This requires
not only attention, but visual working memory (VWM); a short-term storage system for
information which we wish to internally maintain, manipulate or compare - with the
goal of using it for subsequent action (Baddeley & Hitch, 1974; Olivers & Roelfsema,
2020). Like attention, VWM is a strongly limited resource in terms of throughput.
Because encoding information into VWM requires attention, it is believed that the
rate at which information from the external world can be transferred into VWM is
restricted (Oberauer, 2019). Moreover, VWM has limited storage capacity of a few
items (Brady et al.,, 2011; Cowan, 2016; Luck & Vogel, 2013; Ma et al., 201z).

Once a representation is encoded in VWM, it needs to be actively maintained if it is
to be used (Miller et al., 2018), which requires sustained neural activity and therefore
costs physiological energy (Beatty, 1982; Kahneman, 1973). As VWM load is increased,
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the required neural activity is assumed to increase monotonically as a result (until
capacity is reached:; Luria et al,, 2016; Vogel & Machizawa, 2004). Moreover, we need
to maintain our attention for about 50 milliseconds up to a second on each piece of
external information that we wish to encode into VWM (Bays et al., 2011; de Jong et al.,
2023; Vogel et al,, 2006). It thus becomes clear that encoding and maintaining items
in VWM is a costly process, in terms of energy expenditure as well as time. Luckily,
most objects in our surroundings are visually stable over brief periods of time. Chairs
don’t suddenly change shape, trees don't suddenly change colour, and although a
basketball may move around, it remains round and orange. It is because of these
regularities that, when two people throw a basketball around, we can understand
that it is probably the same ball after briefly looking away, even when it is in someone
else’'s hands. These regularities come with the substantial benefit that, during our
daily activities, we can forgo memorising the vast majority of objects, thereby limiting
VWM load - and thus cost — to a minimum.

Indeed, O'Regan (1992) eloquently described how, in many cases, the world can
serve as an external memory for the veridical representations of items — thereby
allowing us to only remember or internally visualise limited details of objects. Shortly
thereafter, Ballard et al. (1995) published a seminal study in which they tested this
concept experimentally with a blocks-copying task. They found that participants
indeed offloaded working memory, keeping VWM load well below assumed capacity.
Rather than memorise everything that we attend (which would be extremely effortful
and time-consuming), we may instead memorise a single object, and store simple
spatial pointers for other possibly relevant objects and locations that we come across,
and then carry on with our activity. Once one of those other objects becomes relevant
for our current activity, we may activate the pointer, make an eye movement to that
location, and then encode its representation into VWM for further use.

Although eye movements are generally considered cognitively 'cheap’ (Koevoet,
Strauch, Naber, & Van der Stigchel, 2023; Koevoet et al, 2024; Theeuwes, 2012;
Theeuwes et al, 1998), they also require some amount of time and energy. To make
every single eye movement, attention needs to be shifted, oculomotor musculature
needs to be recruited, and neural populations need to be remapped (Bays & Husain,
2007: Duhamel et al,, 1992; Jonides, 1983; Melcher, 2007; Rizzolatti et al,, 1987). This
preparatory phase usually takes around 80 to 250 milliseconds, after which the
saccade itself also takes 40 to 400 milliseconds (Bahill et al,, 1975; Baloh et al., 1975;
Liversedge et al,, 2011). As such, when and how much we use memory is delicately
balanced. At its most basic, there exists a trade-off which is a function of the cost
of storing content in memory versus the cost of externally sampling information by
making eye movements. Studies from our lab and others have consistently indicated
that people tend to offload VWM as much as possible. This has most commonly
been shown with copying tasks, in which participants are shown an example layout
containing multiple items which they need to remember and recreate elsewhere in
a workspace. When the example layout can be easily reinspected in these copying
tasks, participants often memorise only one item, place it in the workspace, memorise
the next item, and so on until the task is finished (cf. Ballard et al., 1995; see Qing
et al,, 2024 for a meta-analysis). But remember that this behaviour is the result of
an internal trade-off which can be shifted by altering the cost of memorizing versus
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sampling. As such, simply increasing the distance between the example layout and
the workspace - and thus requiring larger saccades — already shifts participants’ be-
haviour towards memorising more information during each inspection (Ballard et al,,
1995; Draschkow et al., 2021; Inamdar & Pomplun, 2003). Similarly, briefly delaying
access to the example layout each time that participants want to inspect it causes
participants to load VWM more (Bding et al.,, 2023; Gray et al., 2006; Melnik et al,, 2018;
Sahakian et al, 2023; Somai et al,, 2020). Thus, increasing the time- and energy costs
of retrieving external information can alter the delicate balance between storing
versus sampling, explaining one part of what constitutes 'cost..

It should be noted, though, that the aforementioned studies manipulated the cost of
external sampling in such a way that it was stable and predictable within experimental
blocks. As others have mentioned, the storage-sampling trade-off has a strong just-
in-time component, meaning that we sample external information only if and when
it is needed (Droll & Hayhoe, 2007; Droll et al,, 2005; Gajewski & Henderson, 2005;
Hayhoe et al,, 2003; Triesch et al, 2003). When there is a predictable delay of two
seconds, this just-in-time component is disrupted, but we may still be able to factor
the known cost of sampling (e.g., exactly two seconds) into our internal model. In
daily life we frequently encounter situations in which access to external information
is unpredictable. Glare from the sun may intermittently occlude your vision while
driving, a tall person at a concert may block your view of the stage, or a web page
may take a few milliseconds up to several seconds to load. In each of those cases, it
is unknown to us when (or if) information will become available to us again, thereby
strongly disrupting our ability to sample information just-in-time. To compensate for
this disruption, we may build up more elaborate internal representations of external
information whenever it becomes available to us. In Chapter 1, | used a copying task
(Figure 3) to investigate how this unpredictability of access to external information
affects the trade-off between internal storage and external sampling. In Experiment 1,
we intermittently showed and occluded the example layout, and participants had no
control over this. Here, participants attempted to encode more items per inspection
than when the layout was constantly available, but this did not consistently result in
more correct placements. However, those findings could potentially be explained by
inherent differences in how long the example layout could be viewed. In Experiment
2, the example layout only became available after a gaze-contingent delay, which
could be constant or variable. Here, the introduction of any delay led participants to
increase their VWM load compared to no delay, although the degree of variability in
the delay did not affect behaviour. As such, in Chapter 1| argue that any disruption
to the continuous availability of external information is the main driver of increased
VWM usage, and that predictability of access to external information is less important.

Up until this point, the storage-sampling trade-off had been almost exclusively inves-
tigated using aforementioned copying tasks. However, these tasks are quite complex
and require several behavioural components from participants (Draschkow et al.,
2021). Because of this complexity, inspections of the example layout may occur for
several reasons (encoding a shape or its location, tracking which items have been
placed, et cetera), and each correct or incorrect placement - or lack of a placement -
in the workspace may have several causes (incorrectly remembered shape or location,
failed search for the required item, et cetera). Although this paradigm enables us
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Figure 3: An example of a copying task paradigm. Participants memorise objects from the
example layout (left) and drag them to the correct place in the workspace area (right). Stimuli
were originally introduced by Arnoult (1956).

to study behaviour in a very naturalistic way, it clearly complicates analyses with
respect to lower-level behaviour and cognition. In Chapters 2, 3 and 4, | simplified
the paradigm to just a visual search task (Figure 4), in which participants memorised
templates on one side of the screen, and searched for those templates amongst
distractors in the search array. Essentially, this paradigm retains half of the subpro-
cesses within the copying task (encode and search for items), whilst discarding the
subprocesses of dragging and dropping items in their correct locations. Moreover, this
novel paradigm comes with the added benefit that visual search has been extensively
investigated and modelled (Wolfe, 2021), which allows one to make clearer predictions
about expected behaviour. Our key manipulation in Chapter 2 was that templates
could be reinspected throughout the trial in half of conditions, whereas they could
only be inspected once before search onset in the other half of conditions. Here,
we replicated behaviour which is usually encountered in copying tasks; participants
often inspected search templates during the trial when they were able to. In Hooger-
brugge, Sahakian, et al. (2024) | shared three additional unpublished datasets in
which we further showed that this visual search paradigm could replicate the findings
from copying tasks. Notably, throughout all of our datasets, participants frequently
reinspected external search templates that they had looked at earlier within a trial.
Resampling behaviour in our search paradigm generally scaled with complexity of
search, cost of sampling, and was beneficial to task speed, accuracy, and effort; par-
ticipants could spend less time and fewer cognitive resources to encode templates,
and instead memorise or 'refresh’ information only when needed (reinforcing our
concept that the trade-off contains a strong just-in-time component, as discussed in
Chapter 1). In the very first few paragraphs of this General Introduction, | mentioned
that our experiences may start to diverge upon commencement of the assembly
process. What | found in Chapter 2 is that there are indeed individual differences
in how people approach these tasks (some participants relied more on VWM than
others), but there does exist a general pattern of behaviour: When people search for
screws (Figure 1), many of them encode one screw from the instruction manual as

19




[ Memorize == Search \

Target
a -~ % A
Templates “ r

Distractors

¥ ‘ 4 ¥

Figure 4: An example of our search task paradigm. Participants memorise templates (left) and
search for template-matching targets in the search area (right).

an internal template in VWM, search for it, and then move on to the next screw. On
some occasions, people even reinspect the image in the instruction manual when
they think they may have found the screw.

Having established that people strongly and beneficially rely on the external world,
| next asked: How persistent is this behaviour? Let's say you work at the Swedish
furniture store, and you need to assemble twenty-five night stands for display. Is it
then still so beneficial to constantly reinspect the instruction manual, or is it better
to initially take some extra time to elaborately encode representations of the screws
into (long-term) memory? Our reasoning was as follows: Repeatedly searching for
(or even being exposed to) the same search targets leads to increasingly elaborate
internal representations of those targets (likely in interplay with long-term memory;
Carlisle et al., 2011; Ebbinghaus, 1885; Hout & Goldinger, 2010; Pashler et al., 2007,
Woodman et al., 2001, 2007). Additionally, visual search for items stored in long-term
memory is relatively easy and efficient, particularly for many items (Drew & Wolfe,
2014; Drew et al., 2017; Wolfe, 2012; Woodman et al,, 2001). Therefore, there should be
diminishing speed-, accuracy- and effort benefits of resampling templates as these
templates are repeated and become strongly represented in memory. Rather, when
you search for the same screw many times consecutively, making saccades towards
the instruction manual may become more costly than storing representations in
memory - in which case sampling behaviour should decrease or eventually even
cease. In Chapter 3, | put the persistence of external sampling behaviour to the test
by repeating the same template sets for twenty-five consecutive trials. In Experiment
1, search templates remained available throughout all twenty-five consecutive repeti-
tions; only the distractors and target changed between trials. Participants indeed
inspected templates less often in the tenth repetition than in the first few repetitions,
but behaviour mostly stabilised after that. Strikingly, at the end of all twenty-five
repetitions participants still inspected the template area twice per trial when they
searched for four templates! Moreover, response times stabilised along with the
number of inspections, and accuracy remained stable across all repetitions. In Ex-
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periment 2 we tested whether this persistence of resampling behaviour was actually
necessary to maintain high accuracy. We made templates unavailable in the last
ten repetitions, and found that accuracy remained high even when templates could
not be reinspected. Better yet, this seemingly 'excessive’ resampling behaviour was
beneficial to neither short-term nor longer-term performance. Additional analyses
showed that resampling behaviour was at least partially used to boost metacognitive
confidence rather than the actual quality of memory representations. Intuitively, this
behaviour makes sense: memory representations are prone to errors, interference,
and may degrade over time (Baddeley & Hitch, 1974; Desender et al., 2018; Gold et al.,
2005; Hardt et al,, 2013), thus if the cost of sampling is low enough it may be worth
taking some time to verify that our memory is still correct. As such, even when the
benefit of offloading memory is eliminated, resampling behaviour persists — although
the underlying reason partially shifts from offloading memory representations to
boosting confidence in existing representations.

It has become clear that the decision to either use or offload memory in visual
search is highly dynamic, dependent on various environmental- or task factors and
on individual preferences. Moreover, | have shown that whether people can do
something does not mean that they will do it. Specifically, in Chapter 3 | showed that
participants could eventually perform the task from memory, but they still chose to
repeatedly reinspect templates. | then realised that this phenomenon may actually
be able to reconcile some of the mixed findings in a debated sub-type of visual
search — namely multi-target search. By some accounts, humans are able to guide
search concurrently from multiple items in memory (Beck & Hollingworth, 2017; Beck
et al,, 2012; Godwin et al,, 2015; Grubert et al,, 2024; R. S. Williams et al,, 2023), whereas
others have opposed this finding (Ort et al., 2017, 2019; Van Moorselaar et al., 2014). In
Chapter 4, | not only asked whether participants can perform concurrent multi-target
search when instructed (Experiment 1), but also whether they actually apply this
when given free choice on how to search (Experiments 2a and 2b). Participants were
indeed able to search sequentially and concurrently when instructed to do so in
Experiment 1. | then used a novel modelling approach to indicate on a trial-by-trial
basis whether participants searched sequentially or concurrently in Experiments
2a and 2b. Interestingly, participants used sequential and concurrent search as
specific and dissociable modes, and they flexibly adjusted which of the two they
used based on task demands as well as individual preferences. Therefore, sequential
and concurrent search modes can be considered 'tools in the toolbox' of search
strategies; sometimes you need a steel hammer, sometimes you need a wooden
mallet — both do similar jobs but are best suited to a specific problem.

Part ll: Individual- and state-dependent influences on eye
movements

I have discussed that humans generally offload working memory, and that they
compensate by frequently sampling external information with the use of saccades.
When and where we move our attention (and subsequently our eyes) is therefore
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essential in goal-directed tasks - especially those which involve memory (Henderson
& Hollingworth, 1998; Le-Hoa Vo & Wolfe, 2015; Mills et al.,, 2011; Schiitz et al., 2011).
Better yet, even during non-visual or multimodal tasks, the eyes typically exhibit
coupling to, or dominance over, those other modalities (Corneil et al.,, 2002; Macaluso
et al,, 2000; Richardson & Spivey, 2000; Stokes & Biggs, 2014). However, in some
instances we don’t have strong top-down goals. When we stroll through the forest,
watch a film, or visit a museum, we often simply want to look at whatever the
visual environment has to offer without explicitly searching for things, attempting
to remember something, or trying to avoid dangers. In such scenarios, we perform
what is called natural viewing or free-viewing. When free-viewing, we move our
eyes differently than when e.g., searching or memorizing (Borji & Itti, 2014; Buswell,
1935; Henderson & Hollingworth, 1998; Kootstra et al., 2020; Mills et al.,, 2011; Yarbus,
1967), likely because attention is more strongly driven by bottom-up perceptual input
(saliency) than by top-down goals (Itti et al,, 1998; van Zoest et al., 2017; but see Awh
et al,, 2012; Tatler, 2009). Understanding how, when and where people move their
eyes during free-viewing can inform us about fundamental attentional mechanisms
(Gottlieb et al., 1998; Itti et al., 1998; Koch & Ullman, 1987) but also has more direct
commercial applications (e.g., predicting which part of a billboard people will look
at first; Bylinskii et al,, 2017). It is therefore no surprise that considerable time and
resources have been spent on attempting to model gaze behaviour (for example, in
Chapter 5 we analysed 21 models which have been cited more than thirty thousand
times combined). These models aim to predict where people look based largely
on bottom-up visual features, and are therefore commonly referred to as saliency
models. Model predictions are tested by comparing them to (human) gaze behaviour,
usually over a wide range of images (Kimmerer et al.,, 2018), but relatively small
samples of participants and/or over samples with narrow demographic distributions
(e.g., psychology students). Given how often these models are used academically and
commercially, it is important that they are validated for many people and in many
contexts.

We collected data at the NEMO Science Museum in Amsterdam, where we had a
setup in which visitors free-viewed an image while their eye movements were tracked
(Figure 5). This provided the opportunity to test how well saliency models can predict
where people look within a uniquely large sample and across a wider range of
demographics than usual. In Chapter 5, | report on 1,600 museum visitors who took
part in our experiment, ranging from 6 to 59 years of age. We tested gaze behaviour
from our sample against the predictions of 21 popular saliency models, and found
that there was significant variability between demographic groups (e.g., 12-year-old
children compared to 24-year-old adults) in how well these models predicted where
participants would look. Most importantly, our selection of saliency models were best
at predicting where 18-29 year-olds would look, but significantly worse at predicting
this for e.g, children aged 6-17. As such, | highlight in the discussion of Chapter 5
that it is critical to keep an eye out for potential biases when developing and testing
saliency models.

Not only are we likely to look at different locations within images, but our current
mental and physiological states also influence how we move our eyes. For example,
increased expenditure of mental effort has been linked to increased pupil size (Beatty,
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Figure 5: Eye movements made by a participant in the NEMO free-viewing dataset (Chapter
5). White circles indicate fixation locations, circle size represents fixation duration, lines with
arrows indicate the direction of saccades.

1982; Kahneman, 1973; Koevoet, Strauch, Van der Stigchel, et al,, 2023; Strauch et al,,
2022), decreased saccade velocities (Di Stasi et al., 2010, 2013), and a modulation
of microsaccade frequency (Pastukhov & Braun, 2010; Siegenthaler et al., 2014).
Given that mental effort is closely related to arousal (Hjortskov et al., 2004; Teigen,
1994), and arousal in turn is linked to heart rate (e.g,, sympathetic nervous system
activation affects heart rate variability; Azarbarzin et al., 2014; Grassi et al., 1998;
Mather et al,, 2017), it is likely that heart rate and eye movements are physiologically
coupled. Indeed, changes in heart rate or heart rate variability have been linked to
modulations of eyeblink frequency (Nakano & Kuriyama, 2017) and microsaccade
rates (Ohl et al,, 2016). Establishing how eye movements are coupled to heart rate
additionally provides a new avenue towards remotely and unobtrusively measuring
arousal levels. In Chapter 6, | describe an integral approach we took to testing
whether heart rate and oculomotor metrics were linked during free-viewing of the
1994 Forrest Gump motion picture. We specifically investigated this in a movie-
viewing task, such that both spontaneous fluctuations and the movie contents could
affect arousal levels while reducing (top-down) goal-directed influences. Using
a wide range of oculomotor metrics, we were able to consistently classify above
chance level whether participants had high- or low heart rate levels throughout the
movie — and which metrics contributed most towards classification. We found that
especially blink frequency, as well as metrics related to the velocity and amplitudes
of oculomotor movement (rather than frequency or duration), were most informative
for the classification of heart rate. Thus, how we move our eyes is coupled to heart
rate, with arousal as putative underlying mechanism.
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Summary

The external world constantly provides us with incredibly rich visual input, although
there is only so much of it that we can actively process and perceive, let alone
memorise. When, where, and how we make eye movements to gather information
from the external world is therefore an essential aspect of our daily lives. In this
dissertation, | outline in the first four chapters that where and when we make eye
movements to sample from the external world is highly intertwined with how we make
use of visual working memory, and vice versa. | describe additional mechanisms
of the trade-off between internally storing information in VWM versus externally
sampling information, and provide an integrated account of how these mechanisms
interact. Furthermore, | describe in the last two chapters that where we make eye
movements differs between people; and how we make eye movements is linked to
our state of arousal.
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Abstract

Humans maintain an intricate balance between storing information in visual working memory
(VWM) and just-in-time sampling of the external world, rooted in a trade-off between the
cost of maintaining items in VWM versus retrieving information as it is needed. Previous
studies have consistently shown that one prerequisite of just-in-time sampling is a high
degree of availability of external information, and that introducing a delay before being able
to access information led participants to rely less on the external world and more on VWM.
However, these studies manipulated availability in such a manner that the cost of sampling was
stable and predictable. It is yet unclear whether participants become less reliant on external
information when it is more difficult to factor in the cost of sampling that information. In two
experiments, participants copied an example layout from the left to the right side of the screen.
In Experiment 1, intermittent occlusion of the example layout led participants to attempt to
encode more items per inspection than when the layout was constantly available, but this did
not consistently result in more correct placements. However, these findings could potentially be
explained by inherent differences in how long the example layout could be viewed. Therefore
in Experiment 2, the example layout only became available after a gaze-contingent delay,
which could be constant or variable. Here, the introduction of any delay led to increased
VWM load compared to no delay, although the degree of variability in the delay did not alter
behaviour. These results reaffirm that the nature of when we engage VWM is dynamical, and
suggest that any disruption to the continuous availability of external information is the main
driver of increased VWM usage relative to whether availability is predictable or not.
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11 Introduction

Imagine laying a jigsaw puzzle. How many puzzle pieces at a time will you encode into
memory for subsequent placement? One might initially expect that working memory
is loaded to its capacity every time. However, from personal experience you likely
recognize that you rarely apply this strategy, but rather memorize only one or two
pieces at a time before trying to place them in their right location.

Representations of visual information from our environment - such as puzzle pieces
- are stored in visual working memory (VWM); a short-term, limited-capacity system
(Baddeley & Herring, 1983; Ma et al., 2014; Salway & Logie, 1995). The limits of VWM
capacity have been studied extensively with change detection paradigms, delayed
recall, and various other tasks (e.g., Adam et al, 2017; Brady & Tenenbaum, 2013;
Cowan, 2016; Luck & Vogel, 2013; Ma et al., 2014; Oberauer et al,, 2018). Typically in
such studies, displays with to-be-memorized visual information of certain set sizes
(e.g., four coloured squares) are briefly and transiently presented, after which this
information does not reappear. After a retention interval, participants are required to
report on what they remembered; e.g., they are shown a matching- or non-matching
display and report whether any stimuli have changed. VWM capacity is then estimated,
for example, from task accuracy on each set size. This line of research has been
successful, providing insight into how information is represented in VWM and what
its limits are (Cowan, 2016; Luck & Vogel, 2013; Ma et al., 2014).

Interestingly, however, VWM is usually not filled to capacity when participants have
the option to look back at the to-be-memorized information. When and how much
VWM is loaded as a function of task specifics is therefore part of a growing body of
literature (T. Kristjansson et al,, 2018; O'Regan, 1992; Van der Stigchel, 2020; Wilson,
2002). For example, in a puzzle with four remaining pieces, one might only memorize
one or two pieces at a time, fill them in, and then memorize the remaining two pieces
in order to fully complete the puzzle. Therefore, VWM can be regarded as being part
of a dynamic system that constantly weighs the costs of maintaining a (high) memory
load against the costs of external sampling. Indeed, consistent with the example
of a jigsaw puzzle, several studies have found participants to minimally utilize VWM
in many circumstances where information could be retrieved just-in-time from the
environment instead (Ballard et al., 1995; Boing et al., 2023; Draschkow et al., 2021; Droll
& Hayhoe, 2007; Gajewski & Henderson, 2005; Gray et al.,, 2006; Hayhoe et al., 2003;
Inamdar & Pomplun, 2003; Melnik et al., 2018; Risko & Dunn, 2015; Risko & Gilbert,
2016; Sahakian et al., 2023, 2024; Somai et al., 2020; Triesch et al., 2003). In this just-in-
time approach, external information is only fixated and encoded into memory if and
when it is needed for the task at hand, instead of being processed (and memorized)
in advance (Droll & Hayhoe, 2007; Hayhoe et al., 2003). Most notably, previous studies
either manipulated the distance between the area where external information could
be retrieved and the area where that retrieved information needed to be used, or they
delayed access to the required external information. When distance was increased,
external sampling would theoretically become more costly, since larger (thus more
energy-expensive and time-consuming) eye- or head movements were needed to
move the gaze back to the external information. Indeed, the cost of sampling altered
the trade-off between storing and just-in-time sampling; shorter distances were linked
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to the dominance of external sampling, whereas larger distances were associated
with more storing (Ballard et al., 1995; Draschkow et al., 2021; Inamdar & Pomplun,
2003). The second set of studies delayed the access to external information, for
example by letting participants wait every time they wanted to sample externally
(Boing et al., 2023; Gray et al.,, 2006; Melnik et al,, 2018; Sahakian et al,, 2023; Somai et
al., 2020). There, participants showed similar patterns of behaviour as in the distance
manipulations, providing strong evidence that the cost of access to information in
the external world shifts the balance of when and how much one relies on VWM.

The aforementioned studies all provided external environments which were pre-
dictable or stable: External information was removed after an encoding phase (e.g,
change detection tasks) or could be revisited throughout the task (e.g., copying tasks).
When external information can be revisited, the just-in-time sampling strategy is
especially useful if we can make an estimation of how costly (i.e,, time and energy)
such a revisit will be. Even if we are aware that we will have to wait two seconds
before we can resample information, we can factor that delay into our internal model
of the cost of just-in-time sampling versus maintaining higher VWM loads. However,
we commonly experience situations in which access to external information is not
stable. Think, for example, of intermittent glare from the sun in your eyes while
driving, which can make relevant external information (e.g., the position of other
cars) unavailable at an unpredictable interval. Or think of loading a web page to look
up information; depending on your internet speed it may take a few milliseconds up
to several seconds to load the page. In these scenarios, the predictability of access
to external information is disrupted. Even though information will sometimes be
available instantly, the possibility of a delay may disrupt the ability to factor in the
cost of just-in-time sampling. Therefore, one may instead rely on building more
elaborate internal representations of the external world whenever it is available,
rather than sampling information if and when it is needed. It is yet unclear how
disruptions to the predictable availability of external information affect the trade-off
between storing and sampling. We here hypothesized that participants minimized
VWM usage (i.e., primarily sampled externally) when external visual information was
readily available, and that (ir)regularly occluding external information would cause a
shift towards internal storage. Furthermore, we asked whether this trade-off would
change further as information became less and less predictably available.

Across two experiments, participants performed a copying task in which the required
external information was constantly available in one condition, and intermittently
occluded to varying degrees in other conditions. In Experiment 1, external informa-
tion was made available and unavailable for different durations across conditions.
Although the pacing was mostly predictable, participants had no control over when
external information was made available. Experiment 2 followed up on Experiment
1: External information was unavailable by default and only became available after
participants fixated an hourglass for a certain delay period. Importantly, this delay
period could be constant (and therefore mostly predictable as in Experiment 1) or
variable, which made access to external information less predictable.
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1.2 Experiment 1

124 Methods

Participants and procedure

Sample size was determined based on previous, similar, studies (e.g., Draschkow et al.,
2021; Melnik et al., 2018; Somai et al., 2020). 26 participants performed the experiment.
Gaze data of one participant was corrupted and two participants stopped early. Of
the remaining 23 participants (age range 18-29), 10 indicated female and 13 male
gender. All had normal or corrected-to-normal sight. Participants were compensated
with €7 per hour or course credits. The experiment was approved by the Faculty Ethics
Review Board of the Faculty of Social Sciences, Utrecht University (protocol number
21-0297), adhering to the Declaration of Helsinki.

Participants signed an informed consent form, provided their age category and gender,
and were then instructed about the task. Each participant first completed five practice
trials in a baseline condition. After confirming that they understood the task, the
participant started the actual experiment. The experiment took approximately 90-120
minutes to complete.

Apparatus and stimuli

Data and code are available on the Open Science Framework

https://osf.io/z2n5x/. The experiment was implemented with Python 3.6 and PyGaze
(Dalmaijer et al,, 2014). The experiment was displayed on a 27 inch LCD monitor (2560
X 1440 pixels, 100 Hz). Participants placed their heads in a fixed chin- and forehead
rest at 67.5 centimetres from the screen, such that each 100 x 100 pixel stimulus
occupied a visual angle of approximately 2°. The experiment was recorded with an
EyeLink 1000 eye tracker (SR Research Ltd., Canada), which measured monocularly at
a sampling rate of 1 kHz. We did not standardize whether the left or right eye was
tracked. The threshold for eye tracking validation error was 1° (average of 9-point
validation) and 1.5° per-point maximum, otherwise the eye tracker was re-calibrated.
The stimuli used in this experiment were adapted from Arnoult (1956), and were
previously used in Boing et al. (2023), Hoogerbrugge et al. (2023), Sahakian et al. (2023,
2024), and Somai et al. (2020). The stimulus set consisted of five unique shapes, with
each shape additionally mirrored horizontally, vertically, and diagonally, creating 20
stimuli in total (Figure 14B).

Task

Participants performed a copying task in which they copied a layout of six stimuli
within a 3 x 3 grid on the left side of the screen (example grid) to an equally large
empty grid on the right side of the screen (working grid). The centres of both grids
were located at a visual angle of 12° from the centre of the screen, with each of
the grids occupying approximately 7.3° x 8.8° of the visual field. In each trial, six
stimuli were randomly selected without replacement and the example grid layout was
randomly filled with those six stimuli. On the bottom right of the screen, the same
stimuli were presented as in the example grid, but in randomized layout (resource
grid: Figure 11A).
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The participants’ task was to exactly recreate the layout of the example grid in the
working grid, by dragging stimuli from the resource grid to their correct location in
the working grid (Figure 11A). After correctly placing a stimulus, that working grid
location would briefly flash green (750 ms). After incorrectly placing a stimulus, the
corresponding grid location would flash red (750 ms) and the stimulus would not
lock into place, but instead fly back to the location from which it was dragged. The
stimuli in the resource grid remained visible for the whole duration of the trial, even
when already placed correctly in the working grid. A trial ended whenever the grid
was fully copied or if the task was not completed after 42 seconds. Participants were
shown feedback ("Correct"/"Timed out") after each trial.

In the baseline condition, the example grid was always visible. In the other three
conditions, the example grid was either visible or occluded at specified intervals
throughout a trial. Namely, the example grid was repetitiously (1) visible for 4 seconds
and subsequently occluded for 2 seconds, such that the availability of external
information was High; (2) visible for 3 seconds and occluded for 3 seconds, such that
the availability of external information was Medium; (3) visible for 2 seconds and
occluded for 4 seconds, such that the availability of external information was Low.

In each trial, the occlusion time was multiplied by a noise factor drawn from a Gaus-
sian distribution (u =1.0, o=1), with the visible time being adjusted accordingly such
that the sum of visible time and occlusion time was always 6 seconds. Because the
occlusion time was multiplied by a Gaussian noise factor, the possible variation of
occlusion times was greater in the Low availability condition than in the High avail-
ability condition - thereby making occlusion durations somewhat less predictable.
Whenever the example grid was occluded, a pictogram of an hourglass would appear
in its place. The example grid was visible at the start of each trial. Visibility and
occlusion of the example grid were repeated until the trial ended. Example videos of
trials can be found on OSF (https://osf.io/kzsv6/).

Each of the four conditions was tested in its own block of 35 trials and the block order
was randomized between participants. The eye tracker was calibrated and validated
before the start of each block. Additionally, a drift check was performed before the
start of each trial, by computing the root mean squared error (RMS) between the
gaze prediction and a central fixation cross which was shown for two seconds. If the
RMS was greater than 1.5° for more than two subsequent trials, the experimenter
would recalibrate.

Outcome variables

We computed outcome variables to provide an estimate of how much information
was encoded into VWM, and subsequently placed, for each inspection of the example
grid. (A) The number of example grid inspections, which was calculated by counting
how many times within a trial the participant made a saccade across the centre of the
screen from the right side to the left side. In effect, this variable represents how often
participants sampled externally by looking toward the example grid after focusing
on the working- and resource area. We did not count crossings in which only the
hourglass was fixated, and assumed that short fixations would be unlikely to allow
for meaningful encoding (e.g, Bays et al., 2011). Therefore an inspection would only
be counted if the example grid was viewed for at least 120ms before the participant
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Figure 121: A. Example of a partially completed trial in the High availability condition in Experiment 1. In
this example, four items have already been dragged to their correct position. The example grid alternated
between available and unavailable throughout a trial, and this was repeated until the trial was completed. B.
Stimuli as adapted from Arnoult (1956). In each column there is a unique shape, each mirrored horizontally,
vertically, and diagonally; 20 stimuli in total. Each stimulus occupied approximately 2° of visual angle.

crossed back towards the working- and resource area. (B) The number of fixations per
inspection was computed by dividing the number of fixations within the boundaries
of the example grid by the number of useful inspections. This variable approximates
how much information participants attempted to take in each time they placed their
overt attention on the example grid. (C) The number of correct items placed per
inspection was computed by dividing the number of correctly placed items per trial
by the number of useful inspections made in that trial. It is an estimate of how many
items participants (accurately) encoded during each inspection.

We report three additional outcome variables: (D) Completion time (seconds) was
calculated from the start of the trial until all items were placed correctly, or until
the 42-second timer was reached. Because the periods during which the example
grid was occluded were not useless to participants (i.e., they could still place items
during that time), only the time spent gazing at the hourglass in the location of the
occluded example grid was subtracted from the completion time. (E) The number
of errors per trial, in which an error constituted the attempted placement of any
item in an incorrect slot in the working grid. A greater number of errors may reflect
that items were encoded less accurately (Koevoet, Naber, et al., 2023; van den Berg
et al, 2012) or that participants had more liberal thresholds for the quality of memory
representations that they were willing to act on (Sahakian et al,, 2023). (F) The
proportion spent waiting was expressed as the duration that participants spent
gazing at the hourglass, divided by the actual duration with which the example grid
was occluded during that trial. This measure effectively reflects the proportion of a
trial that participants spent unproductively waiting. For example: In a trial in the Low
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condition, if the example grid was occluded for 12 seconds in total and a participant
spent 600 ms gazing at the hourglass, the proportion spent waiting is 0.05. In the
High condition, if the grid was occluded for 6 seconds in total and a participant spent
300 ms gazing at the hourglass, the proportion spent waiting is also 0.05. As such,
the proportion that participants spent waiting was standardized between 0 and 1
and could be compared between conditions.

Analyses

Fixations were detected using 12MC (Hessels et al,, 2017). All fixation candidates
shorter than 60 ms were removed, and fixation candidates which were separated
by less than 1° distance were merged. This approach has been shown to remove
variation between fixation detection algorithms (Hooge et al., 2022).

Statistical analyses were conducted with JASP 018.3 (JASP Team, 2022). The six outcome
variables were aggregated per participant, per condition. All were aggregated by the
mean, except for completion time, which was aggregated by the median. In order
to test whether availability of external information affected our outcome variables,
we report Repeated Measures ANOVAs. If the assumption of sphericity was violated
for an outcome variable, we report corrected ANOVAs (Greenhouse-Geisser if e < 75,
otherwise Huynh-Feldt; following Abdi, 2010). Effect sizes of ANOVAs are reported
with n2. Post-hoc, paired samples t-tests are reported, and p-values were Bonferroni
corrected for six comparisons within each variable. Effect sizes of t-tests are reported
with Cohen'’s d. All statistical test outcomes including Bayes Factors are reported on
the Open Science Framework.

1.2.2 Results

Example grid inspections, fixations, and items placed per inspection

In the baseline condition, participants made a median of 7.66 (median absolute
deviation; MAD = 1.03) example grid inspections per trial, meaning they sampled
externally more than once per item (Figure 1.2A). They inspected the example grid less
often when availability of visual information was lower, F(2.7, 59.5) = 6.97, p < .001, 2
= 0.24. This main effect was primarily driven by the difference between the baseline
and the decreased access conditions, which indicates that the disruption to constant
availability was the main driver of increased memory usage. When availability of
external information was further reduced, no effect on the number of inspections
was found; even in the Low availability condition, participants still inspected the
example grid a median of 6.63 (MAD = 1.06) times — a small difference compared to
the High availability condition (Mdn = 6.91, MAD = 1.07)

Although the number of example grid inspections was mainly different between the
baseline and the decreased access conditions, the number of fixations per example
grid inspection steadily increased as availability was reduced (F(21, 46.4) = 21.91, p
<.001, n? = 0.5). This indicates that participants at least attempted to encode more
information per inspection, ranging between Mdn = 1.83 (MAD = 0.40) fixations in
the baseline condition, up to Mdn = 2.69 (MAD = 0.48) fixations in the Low condition
(Figure 1.2B).

This increase in the number of fixations was somewhat reflected in the number of

36



correct placements per inspection (Figure 1.2C). There was an overall increase across
conditions (F(2.0, 43.8) = 6.60, p =.003, n? = 0.23), although the number of items placed
was relatively low overall and post-hoc tests only showed a significant difference
(p < .001) between the baseline condition and the lowest-availability condition. In
the baseline condition, participants correctly placed just less than one item per
inspection (Mdn = 0.80, MAD = 016), and interestingly this stayed below one item
even in the Low availability condition (Mdn = 0.97, MAD = 0.21).

The number of example grid inspections and the number of fixations and correct
placements per inspection tell us that participants encoded and subsequently placed
(slightly less than) one item per crossing, when external information was always
available. Removing the ability to always inspect was the main driver of fewer
inspections of external information, and an increased number of placements per
inspection. When the example grid availability was further decreased, participants
did not inspect it less frequently, but they inspected it with more fixations. While
participants changed their eye movement strategy, this did not clearly translate into
a different number of correct placements per inspection: participants seemed to
attempt to encode more, but they did not necessarily place more items afterwards
or make fewer errors. Furthermore, participants still did not regularly place two (or
more) items after inspection, even when the example grid was effectively occluded
for two-thirds of a trial.

Completion time, errors, and proportion spent waiting

All participants were able to consistently complete the task within the 42-second
time limit. However, they seemed not to (be able to) alter their strategy enough
to keep completion times consistent across the decreased availability conditions.
Participants took longer to finish the task across almost all conditions as availability
decreased (F(3, 66) = 35.97, p < .001, n% = 0.62), except between the baseline and the
High availability condition (p = 0.88; Figure 1.2D).

Participants made more incorrect placements as availability of external information
was reduced (F(1.8, 39.7) = 15.62, p < .001, n? = 0.42), ranging from a median of 0.09
(MAD = 0.09) errors per trial in the baseline condition to 0.23 (MAD = 0.26) errors per
trial in the Low reliability condition (Figure 1.2E).

Interestingly, participants spent an increasing proportion of trials doing nothing, as
the example grid was occluded for longer periods, F(1.7, 37.0) = 52.69, p < .001, n? = 0.71
(Figure 1.2F). In the Low availability condition, participants spent a median proportion
of 013 (MAD = 0.07) gazing at the hourglass in the location of the occluded information
- amounting to around one second of waiting as occlusion lasted 1017 seconds on
median in the Low condition. These findings suggest that, although participants
attempted to memorize and place more items as availability was decreased, this
adaptation was not necessarily time-efficient; they did not compensate for the
decreased availability enough to avoid waiting unproductively.

1.2.3 Interim discussion

We here set out to disrupt the ability to just-in-time sample external information by
intermittently occluding the example grid. When the visual information required to
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Figure 1.2: Barplots (mean + 95% within-subjects Cl) for each variable, per condition. Individual points
represent within-participant aggregates. A. The average number of inspections of the example grid per
trial. B. The average number of fixations made on the example grid per inspection. C. The average number
of correctly placed items per inspection. D. The median completion time (in seconds). Time spent fixating
at the example grid while it was occluded was subtracted. E. The average number of incorrectly placed
items per trial. F. The average proportion spent fixating at the example grid location while it was occluded.
Note. Post-hoc paired samples t-tests (Bonferroni corrected); *** p < .001; ** p < .01, * p < .05.

perform the task was always available, participants memorized and placed just under
one item per inspection of external information, consistent with findings from similar
paradigms (Sahakian et al, 2023; Somai et al,, 2020). When external information was
not continuously available throughout a trial, participants adapted their strategy and
inspected the example grid less often but with more fixations, which implies that
they at least attempted to increase VWM usage. Interestingly, however, the number
of placed items did not strongly increase when external availability was decreased:
participants placed approximately the same number of items, irrespective of the
degree of availability. This provides evidence that the trade-off can be influenced
by disrupting participants’ ability to sample external information just-in-time, and
that it is nonlinear in nature: Any removal of self-pacing shifts the trade-off, and this
removal seems to influence it more heavily than further decreases in availability of
external information.

However, in the current manipulation participants had limited time to view the
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example grid, which possibly influenced the amount of external information that
could be encoded per inspection (see General Discussion; Koevoet, Naber, et al.,
2023). Furthermore, Experiment 1 did not specifically test the removal of self-pacing
while keeping other parameters intact. For instance, the increased occlusion duration
indirectly introduced a delay of availability, which has been shown to influence the
trade-off (Boing et al,, 2023; Gray et al., 2006; Melnik et al.,, 2018; Sahakian et al., 2023;
Somai et al,, 2020) and may have thus confounded the manipulation. Additionally,
the example grid was incidentally available at the right time, regardless of condition,
as evidenced by the generally small proportions of trials spent waiting. This means
that the just-in-time aspect of availability was partially left intact.

In Experiment 2 we therefore manipulated availability of the example grid without
altering the average occlusion durations across conditions. Furthermore, we did
not limit how long participants could view the example grid. As in Experiment 1, we
expected that participants would predominantly rely on external sampling when
external information was readily available. By introducing a delay we expected to
observe a shift in the trade-off towards stronger reliance on internal storage in
VWM. Critically, we expected that adding variability to the delay period would cause
participants to rely even less on external sampling and to encode more items per
example grid inspection.

1.3 Experiment 2

134 Methods

The methods in Experiment 2 were the same as in Experiment 1, unless stated
differently.

Participants
16 participants performed the experiment; none of whom had participated in Experi-

ment 1. Gaze data of one participant was corrupted. Of the remaining 15 participants
(age range 19-44; M = 25.2), 11 indicated female and 4 indicated male gender.

Task

In Experiment 2, the example grid was occluded by default and showed only if
participants gazed at the example grid area for a certain amount of time. Again, the
delay was signaled by an hourglass. When the delay period was served, the example
grid remained available for as long as participants gazed at it.

In the baseline condition, the example grid showed without delay after participants’
gaze was detected in that area. In the constant delay condition, participants had
to gaze at the hourglass for exactly two seconds before the example grid appeared.
In the low variability condition, the delay period could range between 0 and 4
seconds, drawn from a Gaussian distribution (i = 2.0s, o = 0.1s); in the high variability
condition, the delay period could also range between 0 and 4 seconds, but was
drawn from a wider Gaussian distribution (u = 2.0s, o = 1.0s). In the variable delay
conditions, a new delay duration would be drawn after each time the delay period
was fully served — meaning that the delay duration changed multiple times within a
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trial (see Supplementary Material Figure 1 for the generated distributions of delay
durations). Importantly, on average the delay period was similar across the three
non-baseline conditions, thereby ensuring that any behavioural differences between
conditions would be caused by uncertainty regarding availability, and not by the
inherent difference in delay duration.

Each of the four conditions was tested in its own block of 35 trials and block order
was randomized. Participants were instructed before the start of each block whether
there was "immediate availability", "a constant delay", "some variance", or "a lot of
variance"

Analyses

Instead of the proportion spent waiting, we report (F) The time spent waiting in
seconds. The time spent waiting represents how long participants gazed at the
hourglass while the example grid was occluded, and provides an indication whether
overall delay durations were similar between conditions in which a delay was present.
This outcome variable was aggregated by the median per participant, per condition.

1.3.2 Results

Example grid inspections, fixations, and items placed per inspection

Participants inspected the example grid a median of 5.69 (MAD = 1.34) times per trial
when there was no delay. Although there was an overall effect of condition on the
number of inspections (F(3, 42) = 16.92, p < .001, n% = 0.55), introducing any delay
was the main driver of significantly decreased inspections (all p <.001 compared to
no delay), but whether the delay was constant or variable did not further affect the
number of inspections significantly (Figure 1.3A).

Similar results were observed for the number of fixations per inspection (F(1.8, 24.5)
=14.27, p < .001, n? = 0.51); participants likely attempted to encode more items when
there was a delay compared to no delay (all p <.001), but again there was no effect
of whether the delay period could vary (Figure 1.3B).

The effect of introducing a delay was also reflected in the number of items placed per
inspection (F(3, 42) = 11.77, p < .001, n? = 0.46). Participants placed slightly more than
one item (Mdn = 1.35, MAD = 0.56) per inspection when appearance of the example
grid was not delayed, and placed Mdn = 2.41 to Mdn = 2.68 items when a delay was
introduced (all p <.01). However, the number of placements did not differ significantly
between any of the delay conditions (Figure 1.3C).

Completion time, errors, and time spent waiting

All participants could consistently complete trials within the 42-second time limit.
Participants took Mdn = 15.53 (MAD = 2.01) seconds to complete the task when there
was no delay. When a delay was introduced, median completion time increased to
20.82, 20.37 and 20.58 seconds for the constant delay, low variance, and high variance
conditions respectively (all p <.001 compared to no delay). Despite an overall effect
(F(3, 42) = 16.45, p < .001, n? = 0.54), there were no significant differences between
delay conditions (Figure 1.3D).
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Participants made less than one error per trial when there was no delay (Mdn = 0.31,
MAD = 0.20), and this differed significantly from the delay conditions in which they
made nearer to one error per trial (Mdn = 074, 0.86 and 1.00, respectively; all p <
.001). Again, there was an overall effect (F(1.6, 22.4) = 8.46, p = .003, n? = 0.38), but
no further difference in the number of errors per trial between the delay conditions
(Figure 1.3E).

Across the three delay conditions, participants spent an equal amount of time per
trial waiting for the example grid to reappear, F(2, 28) = 312, p = .060, ? = 018 (Mdn =
3.68, 3.68 and 3.85 seconds, respectively; Figure 1.3F). This indicates that there were
no inherent differences in delay duration across those three conditions.

Inspection- and build time

Because the delay itself was excluded from the overall completion time, the current
findings show that participants were generally faster at completing the task than
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Figure 1.3: Barplots (mean + 95% within-subjects Cl) for each variable, per condition. Individual points
represent within-participant aggregates. A. The average number of inspections of the example grid per
trial. B. The average number of fixations made on the example grid per inspection. C. The average number
of correctly placed items per inspection. D. The median completion time (in seconds). Time spent fixating
at the example grid while it was occluded was subtracted. E. The average number of incorrectly placed
items per trial. F. The median time per trial spent fixating at the example grid location while serving the
delay period. Note. Post-hoc paired samples t-tests (Bonferroni corrected); *** p <.001; ** p < .01, * p < .05.
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when there was no delay at all. In order to investigate the cause of this increase,
we split completion time into its two constituent parts; (A) Total inspection time
in seconds, computed as the sum fixation duration on the example grid (excluding
waiting time); (B) Total build time in seconds, computed as the sum fixation duration
on the right-hand side of the screen.

In the delay conditions, participants spent an increased amount of time inspecting
the example grid compared to the conditions without delay (all p <.01), but spent
equally long across the delay conditions (F(2, 28) = 0.20, p = .819, n% = 0.07; Figure 1.4A).

Similarly, participants spent more time building the grid in the low- and high-variance
conditions than in the condition without delay (p = .007 for both, respectively; Fig-
ure 1.4B). As such, increased completion times were caused by increased inspection
times as well as increased build times.

Higher memory loads (from increased inspection durations) thus went paired with
increased build times, and the proportion of inspection time relative to build time
did not change much across conditions; participants spent approximately half as
much time encoding information as they spent using that information. Although the
ratio between inspecting and building was significantly different between conditions
in general (F(3, 42) = 2.93, p = .045, n% = 017), none of the post-hoc t-tests showed
significant differences (Figure 1.4C).
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Figure 1.4: Barplots (mean + 95% within-subjects Cl) for each variable, per condition. Individual points
represent within-participant aggregates. A. The median time spent inspecting the example grid, in seconds.
B. The median time spent building on the right side of the screen, in seconds. C. The ratio between time
spent inspecting and time spent building. Note. Post-hoc paired samples t-tests (Bonferroni corrected);
¥ p<.001;,** p<.01,* p<.05.
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1.4 General discussion

It has been established that, under full and constant availability of external informa-
tion, participants predominantly reduce VWM load and sample information from the
environment only if and when they need that information for the task at hand. When
the cost of sampling from the environment is increased (in previous studies this
took the form of a delay or increased distance), participants’ strategy shifts towards
storing relatively more items in memory compared to when the cost of sampling
is low. However, in previous studies the cost of sampling was generally stable and
predictable, meaning that the cost of sampling could be factored in to the trade-off
between just-in-time external sampling and internal storing in VWM. Here, we inves-
tigated whether external sampling remains the dominant strategy when the ability to
make accurate estimations of the availability of external information is reduced. To
test this, we let participants perform a copying task in which external information
became available independent of participants’ interaction with it (Experiment 1) and
in which access to external information was less predictable (Experiment 2).

In Experiment 1, we intermittently showed and occluded the required external informa-
tion and participants had no control over this pacing. When the external information
was always available, participants memorized and placed just under one item per
inspection of external information, indicating a preference to rely on the external
world for just-in-time sampling per default, consistent with earlier findings (e.g,,
Sahakian et al., 2023; Somai et al., 2020). When external information was made less
frequently available, participants attempted to encode more information into VWM
per inspection of the example grid, although this did not necessarily reflect in more
items placed. Notably, participants performed worse as external information was
occluded for greater proportions of trials; not only did they take longer to complete
the task, they also made more errors and spent more time waiting unproductively.

However, it was unclear whether the observed behaviour was the result of a reluctance
to encode more information, or whether participants did not have enough time to do
so. In Experiment 2 we therefore introduced a gaze-contingent delay before external
information was made available. This delay could be consistently two seconds, or be
drawn from a narrow or wide Gaussian distribution centered around two seconds.
Participants relied heavily on external sampling when the required information
was easily accessible (no delay), and shifted towards using more internal storage
when a two-second delay was introduced (conceptually reproducing e.g., Boing et al,,
2023; Sahakian et al, 2023; Somai et al,, 2020). The trade-off did not shift further
with the introduction of variability in the delay. Given that the delay in the high-
variance condition ranged between o and 4 seconds (see Supplementary Material
Figure 1), it is unlikely that the variability of the delay was insufficiently efficacious to
reveal meaningful variability-caused effects. Rather, we consider it most likely that
predictability of availability does not influence the trade-off between internal storage
and external sampling. Additional Bayesian statistics provide moderate evidence
for no modulation between the delay conditions on our outcome measures (see
Supplementary Material Tables 2 & 3).

Notably, participants relied more on memory in Experiment 2 than in Experiment
1. Due to the forced delay in Experiment 2, participants may have experienced
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greater time pressure than in Experiment 1, leading them to encode more information
whenever it was available. However, only 53 out of 2,097 trials (2.5%) exceeded the
time limit in Experiment 2, which makes it unlikely that time pressure was perceived
as very high. More likely, this difference in reliance on memory may be explained by
the fact that participants had limited time to view the example grid in Experiment 1,
whereas they could inspect the example grid for as long as they wanted in Experiment
2. As a result, participants could encode (and subsequently place) more stimuli per
inspection than they could in Experiment 1. This is particularly reflected in the number
of fixations per inspection: Participants often made more than six fixations, even
though there were only six stimuli to encode. This means that they fixated some
stimuli multiple times, indicative of more elaborate encoding (e.g., rehearsing or
reinstating; Alfandari et al., 2019; Meghanathan et al., 2019; Zelinsky et al., 2011).

The low number of items placed in Experiment 1 could also be due to the stimuli being
complex, making them relatively difficult to encode and maintain in VWM (Bethell-Fox
& Shepard, 1988; Eng et al, 2005), especially given that viewing time was limited and
somewhat unpredictable (Bays et al,, 2011; de Jong et al., 2023). The current stimulus
set in combination with limited viewing time may have caused ceiling-effects of
participants’ ability to encode items. Using simpler stimuli may have led to decreased
sampling behaviour and more items placed per inspection (cf. Hoogerbrugge et al.,
2023). Avoiding ceiling effects could provide a more sensitive measure of the effect of
availability of external information on memory strategies — not only in terms of the
number of items memorized, but also on the origin of incorrect placements (Oberauer
et al, 2018).

In Experiment 1, participants had no control over availability of the example grid
and could not self-initiate the occlusion period, which could have contributed to
the relatively low memory usage in Experiment 1 compared to Experiment 2. Namely,
participants may have been hampered in their ability to prepare for a shift of attention
in the periods just before external information became available (reminiscent of task
switching costs; Nieuwenhuis & Monsell, 2002; Rogers & Monsell, 1995; Rubinstein
et al, 2001). This lack of preparedness may have affected how much information
participants could encode. Previous work showed that tonic alerting is linked to
how much participants (can) encode on a copying task (Koevoet, Naber, et al., 2023);
participants placed more items correctly when their state of alertness was higher
before encoding than when it was low. This idea fits with the finding that participants
encoded more items in Experiment 2 (in which they could prepare to encode), and
strengthens our theory that participants prefer to access external information when
they need it and are ready to process it. When exactly these states occur, how the
brain monitors for this readiness, and how this depends on one'’s active interaction
with external information will require further investigation.

Additionally, we found several inspections of external information per trial without
subsequent placement of any items (note that these were useful inspections, during
which external information was at least briefly viewed). Qualitatively, these inspec-
tions occurred somewhat more frequently at the start of trials, but were otherwise
evenly distributed throughout trials. Although the current paradigm might not be
sufficiently sensitive to attain a complete understanding of why these crossings were
made, we speculate that they were explorative or comparative in nature; participants
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briefly inspected the whole environment before starting copying (forming an initial
strategy), or later briefly checked which items they had not placed yet. We suggest
that future research further investigates why these inspections occur, taking into
account the theories that differing aspects of external information may be gathered
during inspections (e.g., features, locations, and/or chunks; Ballard et al., 1995; Huang
& Awh, 2018), and that memory may not always be completely depleted before a new
inspection is made (e.g, Ballard et al,, 1995; Sahakian et al., 2023).

Furthermore, completion times were longer in the non-baseline conditions in both
experiments, even though actual waiting time was subtracted from this measure.
What led to this temporal inefficiency beyond waiting alone? In the delay conditions
of Experiment 2, participants spent more time inspecting the example grid as well as
more time building the layout than in the baseline condition. Upon closer inspection,
the observed completion times in Experiment 2 were positively linked to the number
of inspections, the number of fixations per inspection, as well as the number of errors
per trial, all of which cost time (see Supplementary Material Table 4). Participants
also made longer fixations, and fewer fixations per second in delay conditions (Sup-
plementary Material Figure 2), which indicates more time spent encoding (Bays et al,,
2011; Hoogerbrugge et al,, 2023), and has been linked to higher VWM load as well as
general cognitive load (Meghanathan et al., 2015; Mills et al., 2011; Woodman et al.,
2001). These findings indicate that the external availability of information benefits
the speed with which we can execute tasks (cf. Hoogerbrugge et al., 2023) relative to
when availability is delayed, even when correcting for delay durations.

In natural settings, we rarely fully load VWM to capacity (Van der Stigchel, 2020),
and as such the current paradigm is not directly aimed at, nor suited for, making
statements about the capacity limits of VWM (Oberauer et al, 2018). Rather, the
current paradigm allows one to investigate how VWM is used in more naturalistic and
noisy settings, where strategies, preferences, and executive functioning, amongst
others, all play essential roles. During the task, participants are required to encode
content into VWM, perform a search task in the pool of available stimuli, and perform
actions with the items that they find - all while maintaining a mental map of which
items have been placed and which have not. As such, working memory must be
utilized in multiple formats (i.e., visual representations, spatial locations, etc.) and
content must be utilized in multiple modalities (i.e., item recognition, recall, memory
updating; Oberauer et al,, 2018). When provided with such complexity, introducing
any additional working memory load may introduce undesired noise (e.g., Bays,
2014; Oberauer & Lin, 2017; Schurgin et al., 2020), thereby making the task not only
more effortful, but also more prone to mistakes. We here focused on manipulating
the ability to sample just-in-time, but it is clear that the paradigm provides a rich
environment in which to study different aspects of working memory and to place
them within a formalized model (Ngiam, 2023).

In sum, we here investigated how the trade-off between storing in visual working
memory versus sampling from the external world shifts, as the ability to sample
external information just-in-time was manipulated. Generally, any disruption to the
continuous availability of external information, such as intermittent occlusion or
a delay period, were the main drivers of increased memory usage. There was no
consistent evidence that further manipulations of the frequency or predictability
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with which information became available affected the storage-sampling trade-off.
These findings suggest that the cost of external sampling is primarily driven by time
costs rather than predictability of those time costs.
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Supplementary Materials and Data Availability
All code and data can be retrieved from the Open Science Framework
https://osfio/z2nsx/.
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Abstract

Visual search is typically studied by requiring participants to memorize a template initially,
for which they subsequently search in a crowded display. Search in daily life, however, often
involves templates that remain accessible externally, and may therefore be (re)attended
for just-in-time encoding or to refresh internal template representations. Here, we show
that participants indeed use external templates during search when given the chance. This
behaviour was observed during both simple and complex search, scaled with task difficulty,
and was associated with improved performance. Furthermore, we show that participants used
external sampling not only to offload memory, but also as a means of verifying whether the
template was remembered correctly at the end of trials. We conclude that the external world
may not only provide the challenge (e.g, distractors), but may dynamically ease search. These
results argue for extensions of state-of-the-art models of search, as external sampling seems
to be used frequently, in at least two ways, and is actually beneficial for task performance.
Our findings support a model of visual working memory that emphasizes a resource-efficient
trade-off between storing and (re)attending external information.
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24 Introduction

When we shop for groceries, lay a jigsaw puzzle, or attempt to assemble a piece of
Swedish furniture, we must perform visual search. In order to find an object (e.g., a
specific screw), we must actively keep a search template in working memory, and
then search for it amongst other items. Once we are confident that an attended
stimulus matches our template, search is finalized (Olivers & Eimer, 2011; J. Palmer
et al.,, 2000; Wolfe, 2021).

It is no surprise that visual search has been well-investigated for almost a century,
given how fundamental this process is for everyday life (e.g., Kingsley, 1932; Titchener,
1924; Wolfe, 2010, 2021). In traditional paradigms, a template has to be maintained
in visual working memory (VWM) throughout search, after transient and singular
presentation (e.g., Wolfe, 2021). After the offset of the template, participants are
presented with a search array and have to indicate whether the target was present.
Exhaustive and well-established models for this visual search (e.g., Wolfe, 1994, 2021)
explain not only the underlying processes, but also when and why search goes wrong.
For instance, the difficulty of visual search scales with stimulus complexity, set size,
and many other factors (Anderson, 1996; Cain et al., 2013; Hulleman & Olivers, 2017;
Wolfe, 1998, 2021).

Although the conventional experimental set-up has provided many insights into
search, many instances of search in daily life differ. Think of your personal experi-
ence when it comes to assembling a piece of Swedish furniture, for instance: When
searching for two unique screws from a bag full of differing types of screws, we may
regularly fail to identify both of our targets in the first attempt. Luckily, we can always
choose to memorize and search for one screw first, refer back to the instruction
manual, and then search for the other. Similarly, we can look back at the instruction
manual in order to refresh our template representations in VWM whenever we feel
insufficiently confident that we indeed found the screw that we were looking for.

The external world can thus often help us to refresh the template throughout search,
effectively lowering the burden on VWM. Then, the external world may not only provide
the challenge (e.g., the search display), but also ease the challenge, by allowing to
resample the template. Indeed, during many tasks, humans look back and forth at
instructions in order to help them succeed (Alfandari et al., 2019; Droll & Hayhoe,
2007; Hansen et al,, 2018; Hayhoe et al,, 2003; Sullivan et al,, 2021). This behaviour is in
line with earlier findings on mental effort and memory, which indicate that offloading
memory is preferred as much as possible over storing internally, by (re)sampling
from the environment in a just-in-time manner (Draschkow et al., 2021; Droll et al,,
2005; Hayhoe et al., 2003; Melnik et al., 2018; O'Regan, 1992; Risko & Dunn, 2015; Risko
& Gilbert, 2016; Somai et al,, 2020; Triesch et al., 2003; Van der Stigchel, 2020).

It is currently unknown how observers balance between internal storage of the
template and sampling of the external world in search. We therefore asked whether
- and to which degree - participants make use of the option to resample not only
the search array, but also the template, when given the chance. To answer these
questions, we adopted the following reasoning:

- If participants resample templates throughout search when given the chance,
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Figure 2.2: (a) Sequence of a trial. Trials could contain either one template or four templates. In the
unlimited access conditions, templates would remain on the screen throughout a trial. In the limited
access conditions, templates would disappear as soon as search started. The vertical line was always
present throughout a trial. Stimulus size is not to scale. (b) The eight Landolt C's used in Experiment 1. (c)
The eight original stimuli used in Experiment 2 (Arnoult, 1956). Each stimulus could be shown in one of
four rotations, thus creating 32 stimuli. All stimuli occupied approximately 1.5 degrees of visual angle.

this would indicate that they use template availability as a means of relying on
the external world relative to relying on VWM.

- When templates remain available, the amount of resampling indicates the
degree of reliance on the external world as compared to VWM. This reliance
may also change as a result of task difficulty.

- If the amount of resampling is positively associated with better accuracy or com-

pletion times, this would indicate a quantifiable benefit of external sampling
on search.

In order to investigate these questions, participants performed visual search tasks
with single- and multi-template search, as well as conditions in which the template(s)
remained available throughout a trial, or needed to be encoded up front.

2.2 Experiment1

2.21 Methods

All data together with analysis scripts and supplementary materials may be retrieved
via the Open Science Framework https://osf.io/ec7b6/.
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Participants and procedure

Nineteen participants performed the experiment, of which two were excluded from
analysis due to technical issues and one dropped out during data collection. Thus
sixteen participants (8 female, 8 male, age 18-29) were included in the analyses.

Prior to the task, participants read the information letter, signed an informed consent
form, and indicated their age and gender. Participants received €7 per hour or course
credits, with Experiment 1 taking approximately 60 minutes. The experiment was
preceded by four practice trials. The study was approved by the faculty ethics board
of Utrecht University, adhering to the declaration of Helsinki.

Apparatus

Monocular gaze location was recorded with an Eyelink 1000+, at a sampling rate of
1kHz. Stimuli were presented on a 27" 2560 x 1440 LCD monitor with a refresh rate
of 100Hz. Participants were seated and stabilized with a chin- and forehead rest at
67.5 centimeters from the monitor. The experiment was implemented using PyGaze
(Dalmaijer et al., 2014).

All gaze metrics are reported in degrees of visual angle (°). Before the start of the
experiment, and between each block, the eye tracker was calibrated and validated
with a 9-dot grid, allowing a mean error of 0.5° and a maximum per-dot error of 1.0°.
The quality of calibration was automatically evaluated throughout the experiment
while each pre-trial fixation cross was presented. If the calibration error exceeded
1.5° over more than two trials, the eye tracker was re-calibrated.

Task and design

Participants performed a visual search task, in which the screen was divided into two
sections; a template area and a search area, divided by a vertical line. The template
area occupied the leftmost quarter (12.7°) of the screen and contained either one
or four templates, dependent on condition. The search area occupied the rightmost
three quarters (381°) of the screen and contained either one target (matching exactly
one of the templates) and ten distractors in target-present trials, or eleven distractors
in target-absent trials. Distractors were randomly picked and could therefore be
presented multiple times within the search array. Memory loads of one and four
templates were chosen such that there were conditions with the minimum required
VWM load for any given search task (one template), and conditions which required
VWM to be loaded to (or above) capacity if all templates were encoded at once (four
templates; Adam et al., 2017; Luck & Vogel, 2013; Vogel & Awh, 2008). 75% of trials
were target-present trials. Stimuli were spread out such that participants could not
fixate templates and search items simultaneously.

The stimulus set consisted of Landolt C's in eight possible orientations, commonly
used in visual search tasks (e.g., Alfandari et al,, 2019; Becker, 2011; Carlisle et al., 2011;
E. M. Palmer et al., 2019; Smith et al., 2011; Vanyukov et al.,, 2012). Each stimulus was
approximately 1.5° in size (Figure 2.1b).

Before the start of each trial, a central fixation cross was shown, and the trial would
only start if a fixation was detected at that location. Participants memorized the
template(s) in the template area, and searched for them in the search area; indicating
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for each trial whether one of the stimuli in the search area matched a template (by
pressing the 'z'-key) or not ('/’-key). After each trial they received feedback, with
the screen showing either 'Correct’ or 'Incorrect’ in blue or red text, respectively
(Figure 21a). Trials were marked as invalid if the participant indicated that gaze
contingent template disappearance did not work as intended.

In the unlimited access condition, templates were visible throughout each entire
trial. This allowed participants to gaze back at the templates (resample). The limited
access condition followed a classical visual search paradigm by requiring participants
to memorize as many templates as possible at once; when participants’ gaze crossed
the dividing line from the template area towards the search area for the first time,
the templates were removed from the screen and could not be sampled again for
the remainder of the trial (Figure 21a).

The task thus contained four conditions: (1) one template with unlimited access,
(2) one template with limited access, (3) four templates with unlimited access, (4)
four templates with limited access. These conditions are referred to as 1-Unlimited,
1-Limited, 4-Unlimited, and 4-Limited.

Participants performed 60 trials in each of these four conditions; the sequence of
conditions was counterbalanced following a Latin square design.

Analysis

We report three outcome variables. (1) Gaze Crossings to Template was extracted
by counting the number of saccades which started in the search area and landed
in the template area. This variable is representative of the amount of (re)sampling.
Since each trial started with a central fixation cross, the minimum number of cross-
ings was always 1, and any value above is indicative of resampling. (2) Balanced
Accuracy was computed by calculating recall scores (hits divided by number of
target-present trials and correct rejections divided by number of target-absent trials,
respectively), and taking a weighted average of the two - thereby taking into account
the unequal proportion of target-present and -absent trials (implemented using
balanced_accuracy_score in scikit-learn; Pedregosa et al., 2011). Balanced Accuracy
ranges from o to 1, with 0.5 denoting chance-level performance (Brodersen et al,
2010). (3) Completion Time was computed as the time in seconds from the first frame
in which the trial screen was visible until a keypress was recorded.

For all three outcome variables, trials which were marked as invalid were discarded
from the analysis. For Gaze Crossings to Template and Completion Time, only target-
present trials and trials with a correct response were considered. Additionally, trials
with values beyond the overall 99t" percentile were removed. Outcomes of statistical
tests with and without these corrections did not substantially differ. In total, 1.5% of
trials were marked as invalid, and 1.7% of trials were discarded as outliers.

The median (Mdn) and median absolute deviation (MAD) are reported for group-level
outcomes instead of the mean and standard deviation, in order to better account for
non-normally distributed data and group-level comparisons.

Analyses were performed in JASP v0.16.3 (JASP Team, 2022, default priors were used for
Bayesian statistics). We report outcomes of Bayesian ANOVAs and t-tests, and indicate
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whether those tests were performed directionally (BF .o, BF_g) or non-directionally
(BF10). Effect sizes (Cohen'’s d and 7?2, obtained from classical parametric tests) are
reported alongside Bayes Factors. If the assumption of normality was violated, a
Bayesian Wilcoxon signed rank test is reported instead, although parametric and
non-parametric tests conceptually provided very similar outcomes.

An overview of statistical outcomes is reported in the Supplementary Materials.

2.2.2 Results

Participants would regularly resample if given the chance, even sometimes when
only one template needed to be memorized (main effect of template availability BFyo
= 6706.83, 72 = 0.89; Figure 2.2a). When searching for a single template, participants
made slightly more than one gaze crossing per trial from the search area to the
template area if templates remained available throughout the trial (1-Unlimited; Mdn
= 1.07, MAD = 0.08; 2.6% of trials contained a second crossing). If the template could
only be sampled once, participants did not make additional gaze crossings back to
the template area (1-Limited; Mdn = 1.0, MAD = 0.0; BF ;¢ = 299.7, d = 0.9). This pattern
was more accentuated when participants had to memorize four items (main effect
number of templates BFyq = 49713, 2 = 0.80; interaction effect BFy( = 530 x10'°, 72 =
0.79). Here, participants made more crossings when templates remained available
(4-Unlimited; Mdn =1.91, MAD = 0.46) than when access to the templates was limited,
where they made only the initial crossing (4-Limited; Mdn = 1.0, MAD = 0.0; BF g = 2.5
x10°, d = 2.3).

Overall, there was a main effect of the number of templates on Balanced Accuracy
(BF1o = 835819, 2 = 0.79; Figure 2.2b), but not of template availability (BF;o = 2.03,
n2 = 0.32). The accuracy was equal between the 1-Unlimited condition (Mdn = 0.97,
MAD = 0.03) and the 1-Limited condition (Mdn = 0.97, MAD = 0.04; BF ;¢ = 0.4, d = 0.1),
suggesting that resampling had no immediate benefit on accuracy in single-template
search. With four templates, however, a benefit of unlimited access to the templates
was observed, with higher accuracy in the 4-Unlimited condition (Mdn = 0.89, MAD
= 0.05) than in the 4-Limited condition (Mdn = 0.84, MAD = 011; BF o = 8.5, d = 07,
interaction effect BFyo = 10.26, n;} = 0.33). These findings highlight that the number of
templates and template availability dynamically affected accuracy on the task.

A main effect of template availability highlights an overall benefit of the possibility
to resample on completion time (BFyg = 7.33, n, = 0.43; Figure 2.20), although this
effect was driven by differences in four-template search and not in single-template
search (interaction effect BFyo = 91.89, 72 = 0.42). Specifically, template availability
did not benefit speed when participants memorized one template. Completion times
were similar in the 1-Unlimited condition (Mdn = 2.49s, MAD = 0.33) and 1-Limited
condition (Mdn =2.60s, MAD = 0.43; BF_y = 0.9, d = -0.3). In the 4-Unlimited condition
(Mdn = 8.28's, MAD = 1.69), participants were two seconds faster than in the 4-Limited
condition (Mdn =10.44s, MAD =111; BF_o = 23.9, d = -0.9). As such, template availability
reduced search completion time, but only when searching for multiple templates.
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2.2.3 Interim discussion

In Experiment 1, we investigated whether participants preferred to rely on the external
world rather than taxing visual working memory (VWM) - and if so, what the extent
of this reliance was and whether it changed as a result of task difficulty. Lastly, we
investigated whether there was a quantifiable benefit of this reliance on behaviour.

Participants regularly resampled the template area when templates remained avail-
able throughout the trial, sometimes even when only one simple template needed
to be memorized. Furthermore, this effect was greater in multi-template search
compared to single-template search. This indicates that participants often relied
on availability of templates when possible, but that the degree of this reliance was
dependent on task difficulty.

When memorizing one template, the ability to resample was not linked to an observ-
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Figure 2.2: Outcome measures of Experiment 1 (left-hand panels) and Experiment 2 (right-hand panels).
(a, d) The number of times the gaze crossed from the search area to the template area, as a measure
of (re)sampling. Since each trial started with a central fixation cross, the minimum number of crossings
was always 1, and any value above is indicative of resampling. (b, ) Balanced accuracy, which takes into
account an unequal proportion of target-present and -absent trials. Chance performance = 0.5. (¢, f) Trial
completion time in seconds, measured from trial start until keypress. Note: All panels except b and e
visualize data of correctly answered and target-present trials only. Diamond markers denote individual
participants.
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able benefit on classical behavioural outcomes such as accuracy or completion time.
However, a benefit of the ability to resample did emerge with four templates instead
of one, which indicates that the usefulness of being able to resample becomes more
pronounced when the demand on VWM is increased.

Because participants performed very well with one template — which suggests possible
floor/ceiling effects — and because the stimuli relied on just one feature (opening
direction), we sought to extend the observed phenomena to more complex visual
stimuli in Experiment 2.

For Experiment 2 we therefore posited:

- If search difficulty was indeed to affect the degree of reliance on the external
world as opposed to VWM, then similar effects as in Experiment 1 should be
observed, but more pronounced in nature with complex stimuli. This should
be observable in single-template search, and be further accentuated in multi-
template search.

2.3 Experiment 2

2.31 Methods

Experiment 2 followed the same design and procedure as Experiment 1, but with
different stimuli.

Participants

Eighteen participants performed the experiment, of which two were excluded due to
technical issues. Of the remaining sixteen participants (7 female, 9 male, age 18-29),
seven had also participated in Experiment 1. Experiment 2 took approximately 90
minutes to complete.

Stimuli

Stimuli (Figure 21¢) were a subset of complex shapes introduced by Arnoult (1956),
which have been previously employed in VWM research (e.g., Sahakian et al,, 2023;
Somai et al., 2020).

In order to determine which of the original 30 stimuli were most difficult to verbalize,
an online pilot study was run (N =48). Participants indicated which word or name
they would assign to each of the stimuli. We then computed the consensus (the
percentage of identical or semantically similar responses) and selected the eight
stimuli for which consensus was lowest (M consensus of used stimuli = 43%; M of all
stimuli = 61%).

Each of the eight selected stimuli could be shown in four configurations (90° rota-
tions), resulting in 32 stimuli. Template and target were considered to be matched
only if both the shape and rotation were identical.
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2.3.2 Results

Replicating Experiment 1, participants resampled more frequently when templates
remained externally available (main effect BFyo = 3.69 x10%, 12 = 0.92; Figure 2.2d),
and this was again stronger in four-template search than in single-template search
(interaction effect BFyo = 6.68 x10%!, 2 = 0.97). Participants made a greater number
of crossings from the search area to the template area in the 1-Unlimited condition
(Mdn =1.32, MAD = 0.27, 87% of trials contained a second crossing) as compared to
the 1-Limited condition (Mdn = 1.0, MAD = 0.0; BF ;¢ = 207.7.6, d = 1.2). They also made
a greater number of crossings in the 4-Unlimited condition (Mdn = 2.8, MAD = 0.26)
as compared to the 4-Limited condition (Mdn = 1.03, MAD = 0.05; BF o = 1.6 x10%, d
= 4.7). Beyond replication of Experiment 1, these accentuated effects indicate that
the introduction of more complex search templates indeed led to more external
sampling.

Overall, unlimited template availability had a positive effect on accuracy (BF;g =
1323.97, 7 = 0.81; Figure 2.2e). This effect was not previously present, showing that the
introduction of complex stimuli indeed affected task performance. This was again
dynamically altered by the number of templates (interaction effect BFo = 213 x 108,
n2 = 077). The balanced accuracy was approximately equal between the 1-Unlimited
condition (Mdn = 0.98, MAD = 0.03) and the 1-Limited condition (Mdn = 0.97, MAD =
0.03; BF 1o = 2.4, d = 0.4). Showing a much more pronounced effect than in Experiment
1, however, participants performed the task substantially more accurately in the
4-Unlimited condition (Mdn = 0.93, MAD = 0.03) than in the 4-Limited condition, where
some participants even performed near chance level (Mdn = 0.64, MAD = 0.11; BF ¢ =
10375, d = 2.0). These findings again highlight that template availability can benefit
accuracy on the task, but more substantially so with complex stimuli than with simple
stimuli.

Participants were consistently faster when they could resample (main effect BFyq =
180.74, 1, = 0.72; Figure 2.2f), but this benefit was greater in four-template search than
in single-template search (interaction effect BFyo = 2.95 x10°, 52 = 0.73). Participants
were slightly faster in the 1-Unlimited condition (Mdn = 1.96's, MAD = 0.27) than in the
1-Limited condition (Mdn = 2.29's, MAD = 0.66; BF_, = 61, d = -0.7), which indicates
a small benefit of the ability to resample on task completion time. The benefit of
template availability on completion times was also observed in the 4-Unlimited
condition (Mdn = 579, MAD = 01.45), showing almost a halving of the completion
time as compared to the 4-Limited condition (Mdn = 9.67s, MAD = 2.71; BF_¢ = 3299.0,
d = -1.6). Overall, these findings show again that the benefit of template availability
on completion time was more pronounced in four- versus single-template search,
and in complex- versus simple templates.

2.3.3 Interim discussion

In both Experiments, participants made use of the possibility to resample templates,
primarily when four items needed to be memorized. The possibility to resample
templates was associated with shorter completion times and higher accuracy.

But why did template availability benefit completion times, given that this would
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require more large saccades back and forth between the template- and search areas?
And to what end did participants resample? Was it to encode subsets of templates
after each gaze crossing or was it to refresh (double-check) existing representations
in VWM? Lastly, one may ask whether double-checking was actually beneficial for
search accuracy. We address these questions in the following section.

2.4 How was template availability used?

2.41 Just-in-time sampling was linked to shorter completion times
than fully loading VWM

Analysis

We report two outcome variables aimed at uncovering why participants were slower at
the task when they could not resample. These variables inform us how much time was
spent encoding templates (Henderson & Ferreira, 2013; Koevoet, Naber, et al., 2023).
(1) Total Sampling Duration in seconds provides the overall dwell time in the template
area, and was computed as the summed duration of all fixations in the template area
within each trial. (2) Template Fixation Duration in milliseconds arguably indicates
how elaborately participants encoded templates, and was extracted by computing
the median duration of all fixations in the template area within each trial.

The outcome variables were aggregated by the median per participant, per condition.

Results

Participants spent more time fixating the template area when they could not resample
(Figure 2.3a,c). There were main effects of template availability in both experiments
(Experiment 1 BFyo = 362.45, 72 = 0.66; Experiment 2 BFyo = 9259, 2 = 0.77), and this
effect was stronger when four templates needed to be encoded (interaction effects

Experiment 1 BFyo = 474 x10°, 2 = 0.85; Experiment 2 BF o = 112 x10%, 12 = 0.82).

There was no main effect of template availability on total search duration in either
experiment (BFyo = 0.26, 52 = 0.007; see Supplementary Materials Figure 1), meaning
that increased template sampling duration was the main cause of the increased trial
completion times when templates could not be resampled.

Furthermore, participants fixated longer on individual templates when those tem-
plates could not be resampled, regardless of the number of templates that needed to
be memorized (main effects of template availability Experiment 1 BFg = 26.0, 77127 = 0.54;
Experiment 2 BFyo = 2419.8, n; = 0.74; Figure 2.3b,d), which suggests that participants
attempted to encode templates more deeply when they knew that they could not
resample later.

Together, these findings show that participants spent more time encoding templates
when they could not resample them later, which was linked to longer completion
times. When templates could be resampled, it therefore seems that encoding fewer
templates, and encoding them less deeply, was a relatively efficient strategy which
compensated for the added time cost of making multiple gaze crossings.
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2.4.2 Templates were encoded just-in-time or refreshed

Analysis

Data of Experiments 1and 2 were combined (N =32), using all trials from the conditions
in which participants could resample (1-Unlimited and 4-Unlimited, including target-
absent and incorrect trials). Outcomes were conceptually similar when including only
target-present and correct trials.

We explored with two outcome variables whether resampling was used to just-in-time
encode subset of templates, or whether it was used to refresh existing representa-
tions in VWM: (1) Onset of each gaze crossing to the template area, expressed as a
percentage of trial duration. Onsets were defined as the onset of saccades which left
the search area and landed in the template area. (2) The number of Unique Templates
Fixated after each crossing. By definition, this value was always 1 in the 1-Unlimited
condition, since only one template was present. In the 4-Unlimited condition, this
value could range from 1 to 4.

We next calculated these outcome variables based on whether they described the
15t, 2nd 37 or 4th crossing within a trial. Too few 37¢ and 5" crossings were made
in the 1-Unlimited and 4-Unlimited conditions respectively, so those crossings and
subsequent crossings are not reported. Crossings in which no templates were fixated
were excluded (4.3%). 4 out of 32 participants did not make any 2™ crossings in the
1-Unlimited conditions and were therefore excluded, leaving 28 remaining partic-
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ipants for analysis of the 1-Unlimited condition. Additionally, one participant did
not make any 3"¢ or 4" crossings in the 4-Unlimited conditions, and was therefore
excluded, leaving 31 remaining participants for analysis of the 4-Unlimited condition.
Per outcome variable, values beyond the overall 99" percentile were excluded as
outliers. The outcome variables were then aggregated by the mean per participant,
per condition.

Results

In both conditions, participants made their first crossing almost immediately after
trial onset (1-Unlimited Mdn = 8.4%, MAD = 2.64%; 4-Unlimited Mdn = 4.2%, MAD =
2.08%), and thus did not elaborately inspect the search array before crossing towards
the template area (Figure 2.4a). When participants needed to memorize one template,
secondary gaze crossings were made relatively late in the trial (Mdn = 70.0%, MAD =
10.65%), which suggests that this crossing often served to "double-check" whether the
target was indeed found (or verifying that it was absent), by refreshing the template
representation in VWM.

When four templates needed to be memorized, secondary crossings were made
relatively earlier in the trial (Mdn = 39.9%, MAD = 6.63%) than in the one-template
condition, BFyg = 4437.2, d = 1.6. Third crossings were made just past halfway through
the trial (Mdn = 57.7%, MAD = 6.85%), and fourth crossings (Mdn = 69.4%, MAD =
5.90%) were made around the same time as secondary crossings in the one-template
condition, BFig = 0.2, d = -011.

The number of unique templates fixated in the 4-Unlimited condition (Figure 2.4b)
suggests two principal strategies: Some participants fixated (i.e., attempted to en-
code) approximately one template per crossing, in all crossings, thus loading VWM
minimally. Other participants rather fixated multiple templates in their first crossing,
and fewer templates in subsequent crossings. Most of the latter group of participants
(who averaged three or more fixated templates in their initial crossing) still fixated
approximately two unique templates in their secondary crossing — which suggests
that these participants tried to rely more on memory, but were not always successful
in that attempt.

In sum, these findings suggest that resampling was used in two primary ways; either
to double-check whether the target indeed matched the template, or as a means to
only partially encode (a subset of) the templates in the initial crossing. Subsequent
crossings could then be used to just-in-time encode remaining templates, or to
strengthen existing VWM representations, if necessary.

2.4.3 Usefulness of template resampling

Analysis

Given that participants could use external sampling both to just-in-time encode sub-
sets and to refresh existing representations in VWM, we investigated more specifically
how these strategies were applied. (1) The Number of Gaze Crossings to the template
area provides a measure of whether resampling was applied differently in target-
absent versus target-present trials. In target-present trials, search could regularly
terminate before all templates were encoded. Conversely, participants needed to
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compare all templates against the search array when there was no target. A greater
number of crossings in target-absent than target-present trials would therefore be
expected in exhaustive search. This variable was aggregated by the mean number of
crossings per participant, per condition. (2) Resampling could also serve to refresh
existing template representations in VWM. We computed Gaze Ended on Templates;
the percentage of trials in which the last fixation of the trial occurred in the template
area — meaning that a response was given while (or directly after) fixating a tem-
plate. Although not comprehensive, this outcome variable represents the majority of
instances in which participants double-checked template representations in VWM.

The percentage of trials in which the gaze ended on the templates in the 1-Unlimited
condition was analysed by performing a one-sample t-test against 0, because there
were no such occurrences of double-checking in the incorrect trials.

Results

Participants made consistently more gaze crossings to the template area in target-
absent trials than in target-present trials (main effect BFyo = 29317.57, 72 = 0.77), in
both the 1-Unlimited condition (BF 1o = 5.0, d = 0.4) and in the 4-Unlimited condition
(BF.o = 8.57 x107, d = 1.6; Figure 2.5a). In the 4-Unlimited condition, participants
crossed nearly four times per trial (Mdn = 3.77, MAD = 1.29) in target-absent trials,
which suggests that they inspected the templates more exhaustively in those trials,
and applied resampling dynamically in order to verify that there was indeed no target.

Furthermore, participants’ gaze ended in the template area (indicative of double-
checking behaviour) more frequently in correctly-answered trials than in incorrect
trials in both conditions (main effect of correctness BFy = 429.84, n, = 0.49; Figure 2.5h),
which suggests that double-checking was a useful strategy for achieving higher
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Figure 2.4: Resampling could be used to refresh the template representation in VWM or to encode templates
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accuracy. There was no main effect of the number of templates (BFyo = 0.53, 7} =
0.07), which indicates that participants used double-checking equally often in both
one- and four-template conditions. Although the absolute percentages of correctly-
answered trials in which this behaviour occurred were relatively low (1-Unlimited
Mdn = 5.6%, MAD = 8.24%; 4-Unlimited Mdn = 9.3%, MAD = 8.93%), there was a clear link
between double-checking at the end of trials and increased accuracy on the task.

In sum, participants dynamically used externally available templates to their advan-
tage across conditions. For instance, they resampled more often in order to verify
target absence, and used double-checking at the end of the trial to achieve higher
accuracy.

2.5 General discussion

The role of VWM in visual search has been studied almost exclusively with templates
which can only be memorized before starting search (e.g., Bahle et al., 2018; Olivers
& Eimer, 2011; Van Moorselaar et al.,, 2014). The external world, however, frequently
provides possibilities to offload memory to the environment or to refresh template
representations in memory during search. Across two experiments, we investigated
whether participants delayed the encoding of templates when external templates
remained available, whether they refreshed existing template representations, and
how this ultimately affected task performance. Results showed that participants
used external templates in all conditions that allowed it - in particular by delaying
encoding (in line with predictions from VWM research; Ballard et al., 1995; Draschkow
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Figure 2.5: The ability to resample was used advantageously in both one- and four-template conditions,
and in target-absent and target-present trials. (@) The number of gaze crossings per trial as an indicator of
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et al,, 2021; Droll et al., 2005; O'Regan, 1992; Risko & Dunn, 2015; Risko & Gilbert, 2016;
Somai et al,, 2020; Van der Stigchel, 2020), or by refreshing their existing internal
template representations (conform e.g., Alfandari et al., 2019).

Does resampling aid visual search - and if so, in what way? A benefit of the possibility
to resample (i.e., on accuracy and completion time; Hulleman & Olivers, 2017; J.
Palmer et al.,, 2000; Wolfe, 2021) was present in all but the easiest condition (with
one relatively simple template), and this benefit scaled as search became more
difficult (complex stimuli and more templates; Bethell-Fox & Shepard, 1988; Drew &
Wolfe, 2014; Eng et al., 2005; Ort & Olivers, 2020; Van Moorselaar et al., 2014). Firstly,
participants spent less time dwelling on the templates in their initial inspection
when they could resample, compared to when they could not. Secondly, participants
made shorter fixations on individual templates when they could resample, which
suggests that they attempted to encode the fixated templates less deeply and thereby
relied less on internal storage in VWM. We argue that participants spent less time
encoding templates when they could resample, because potentially insufficient
representations could simply be refreshed later in the trial. This reliance on external
templates, relative to fully loading VWM, was therefore temporally efficient in such a
way that it offset the cost of making additional saccades between the search- and
template areas. As such, being able to resample templates allows for decreased VWM
usage in terms of the number of encoded templates and depth of encoding, which in
turn provides a clear time-benefit to search.

Resampling also provided participants with ways to boost confidence during search,
thereby increasing accuracy on the task. Specifically, participants resampled the
template area more often in target-absent trials than in target-present trials as a way
of verifying that indeed no target was present. Furthermore, participants occasionally
refixated the template area directly before giving a response, thereby refreshing
existing template representations in VWM - which was linked to higher accuracy.
Together, these findings highlight that resampling can benefit accuracy in multiple
ways.

Interestingly, the fact that participants could fixate templates for verification at the
end of trials must mean that not only template representations were encoded in
VWM, but that some elements of the search array were also in memory — not only as
elements which help guide search (as in Wolfe, 2021), but also as target templates.
In instances of search where external templates remain available, templates and
targets can therefore serve interchangeable roles throughout search and within VWM
(reminiscent of hybrid search; Drew et al., 2017; Li et al., 2023).

Irrespective of strategy, almost all participants could perform the task at above-
chance level (even at the highest difficulty), which suggests that resampling was
generally not strictly necessary. However, there were individual differences regarding
the number of templates that were fixated in the initial crossing; some participants
encoded one template at a time, while other participants attempted to encode
multiple templates in each crossing. These individual differences in strategies could
in turn relate to individual differences in, for example, VWM capacity or executive
functioning.

Furthermore, it is likely that not only the number of templates and stimulus set
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influence the degree of external (re)sampling. Varying other aspects of the task, such
as the number of distractors, stimulus size, and crowding, may further modulate
how frequently templates are resampled. Because distractors could here occur
multiple times within the search array (thereby decreasing search difficulty; J. Duncan
& Humphreys, 1989), the degree of resampling may have been higher if distractors
could not occur redundantly.

In the framework of Guided Search (and alternative models), the final step consists of
comparing an attended item in the search array to the template in memory (J. Palmer
et al,, 2000; Wolfe, 2021). Extending this framework, we suggest that not only the
search array can be refixated, but that template representations in VWM may also
be resampled before a decision is made. In many instances of search, the external
world can therefore not only provide us with the challenge (find a target), but can
also ease the challenge (by allowing us to refresh the template or to delay encoding).

2.6 Conclusion

While visual search is commonly studied with to-be-memorized - and subsequently
unavailable - search templates, many instances of search are clearly different. For
instance, we might be desperate while trying to find that missing screw when assem-
bling a new cupboard, but fortunately we can refresh the template representation
by looking back at the manual. Participants frequently revisited templates during
search when they were given the chance - more so when search was difficult. How
participants used external sampling hereby differed; in some instances participants
encoded only subsets of templates, in other instances participants double-checked -
both of which benefited search performance. Given that we can resample templates
in many instances of visual search, which is often beneficial to task performance,
we strongly advise not to hide your Swedish furniture assembly instruction manual.
These findings bear implications for influential models of visual search, which should
consider the option that not only the search array, but also external templates, can
be resampled.

Supplementary Materials and Data Availability
All data, together with analysis scripts and supplementary materials, may be retrieved via the
Open Science Framework https://osf.io/ec7b6/.
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Abstract

We commonly load visual working memory minimally when to-be-remembered information
remains available in the external world. In visual search, this is characterised by participants
frequently resampling previously encoded templates, which helps minimize cognitive effort
and improves task performance. If all search templates have been rehearsed many times,
they should become strongly represented in memory, possibly eliminating the benefit of
reinspections. To test whether repetition indeed leads to less resampling, participants searched
for sets of 1, 2, and 4 continuously available search templates. Critically, each unique set of
templates was repeated 25 trials consecutively. Although the number of inspections and
inspection durations initially decreased strongly when a template set was repeated, behaviour
largely stabilised between the tenth and last repetition: Participants kept resampling templates
frequently. In Experiment 2, participants performed the same task, but templates became
unavailable after 15 repetitions. Strikingly, accuracy remained high even when templates could
not be inspected, suggesting that resampling was not strictly necessary in later repetitions. We
further show that seemingly 'excessive’ resampling behaviour had no direct within-trial benefit
to speed nor accuracy, and did not improve performance on long-term memory tests. Rather,
we argue that resampling was partially used to boost metacognitive confidence regarding
memory representations. As such, eliminating the benefit of minimizing working memory load
does not eliminate the persistence with which we sample information from the external world
- although the underlying reason for resampling behaviour may be different.
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34 Introduction

Visual search is one of the most common tasks that we perform throughout the day
(Wolfe, 2010). Frequently, we search for our friend in a crowd, for a symbol on our
phone’s keyboard, or for a screw while assembling furniture. Although these tasks
may seem trivial at first, one visual search task requires the completion of several
subtasks. For example, we must first know what we are searching for; we won't be
able to find the screw that we need if we don't know what it looks like. To this end, we
encode the search target (e.g, memorize a picture of the screw from an instruction
manual), and maintain a template of its appearance in visual working memory (VWM).
Alternatively, if we have done this task before, we can remobilize existing long-term
memory (LTM) representations of our target (instead of visually sampling from the
instruction manual) and hold it in VWM. This VWM template then helps us guide
search towards possibly relevant locations, and allows us to decide at each of those
locations whether what we see matches our internally represented template, or is
something else (Olivers & Eimer, 2011; J. Palmer et al., 2000; Wolfe, 2021).

It is evident that VWM is an essential component within the guided visual search
process, although when and how much VWM is loaded depends on the task constraints,
and the limitations (or facilitation) provided by the environment. Specifically, eye
movements are relatively effortless (Koevoet, Strauch, Naber, & Van der Stigchel,
2023; Theeuwes, 2012; Theeuwes et al., 1998), which is why participants generally
prefer to make just-in-time eye movements towards relevant external information
rather than to load up and maintain "effortful’ VWM representations (Kahneman, 1973;
O'Regan, 1992; Van der Stigchel, 2020). This preference has been robustly shown
across various tasks, with participants tending to minimize the number of items that
they encode into memory (Boing et al., 2023; Draschkow et al.,, 2021; Droll et al., 2005;
Hayhoe et al.,, 2003; Hoogerbrugge et al., 2023; Koevoet, Naber, et al., 2023; Melnik
et al.,, 2018; Risko & Dunn, 2015; Risko & Gilbert, 2016; Sahakian et al.,, 2023; Somai
et al., 2020; Triesch et al., 2003). Furthermore, participants often reinspect previously
encoded items, suggesting that they also encode less elaborately, and prefer to use
external information to refresh internal representations instead (Ballard et al., 1995;
Hoogerbrugge et al., 2023; Koevoet, Naber, et al., 2023; Sahakian et al.,, 2023).

This minimization of VWM load also occurs in visual search tasks when templates can
be resampled throughout. In those cases, participants mainly encode and search for
one template at a time before encoding the next template (Hoogerbrugge et al., 2023;
Li et al., 2023). Participants hereby frequently resample external information which
they encoded earlier - not only when searching for four complex templates, but also
when searching for just one simple template (Alfandari et al.,, 2019; Hoogerbrugge
et al., 2023). This behaviour is beneficial to completion time, accuracy, and effort;
participants can spend less time and fewer VWM resources to encode templates, and
instead encode or refresh VWM contents only when needed. These findings highlight
the relative benefit of dynamically minimizing VWM load with the help of the external
world when we can, even on simple search tasks.

The aforementioned studies have commonly considered saccades to be relatively
effortless compared to VWM maintenance, but they primarily investigated the short-
term dynamics of external sampling versus internal maintenance, i.e., on a trial-
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by-trial basis. We here instead investigated these dynamics on a more long-term
scale, by examining resampling behaviour over the course of many trials. Say you
are assembling a bookcase, and you need the same type of screw twenty-five times
during the building process. In that case, it may become more time-efficient and less
effortful to elaborately encode the visual search template into (long-term) memory,
relative to repeatedly refreshing internal representations by making many saccades
towards your instruction manual. For example, as we repeatedly search for the same
target, we tend to build up an increasingly elaborate internal representation of that
search target (likely in interplay with LTM; Carlisle et al.,, 2011; Ebbinghaus, 1885;
Hout & Goldinger, 2010; Pashler et al.,, 2007; Woodman et al., 2001, 2007). Moreover,
visual search becomes relatively easy and efficient, even for multiple items, when
those items are stored in LTM (e.g., Drew & Wolfe, 2014; Drew et al., 2017; Wolfe, 2012;
Woodman et al,, 2001, although guided search is characterised by different limitations
than hybrid search). In other words, on a longer-term scale, resampling of search
templates could eventually become redundant - in which case resampling behaviour
should eventually cease.

We here investigated whether the preference for (re)sampling external information
is persistent, and whether the balance between storing in memory versus sampling
externally is different on a long-term scale than on a short-term scale. In two experi-
ments, participants searched for templates which remained available for inspection
throughout trials. Critically, each unique template set was repeated twenty-five times
consecutively. This should make it more (effort-)efficient to elaborately encode items
(either into VWM or LTM), and thus to decrease external sampling behaviour. However,
given the persistence of within-trial sampling behaviour (as observed in e.g., Hooger-
brugge et al.,, 2023), it is uncertain whether participants would opt for a longer-term
optimum which may cost more effort in the short-term.

3.2 Experiment1
3.21 Methods

All data together with analysis scripts and Supplementary Materials may be retrieved
via the Open Science Framework https://osfio/nrsqe/. Example videos of trials can
be viewed at https://osf.io/hyodm/. This study was not preregistered.

Participants and procedure

Fifteen participants (13 female, M, e = 22.5) performed the experiment. Sample size
was based on previous studies using similar paradigms (e.g., Alfandari et al., 2019;
Hoogerbrugge et al., 2023)

Prior to the experiment, participants read the information letter, signed an informed
consent form, and indicated their age and gender. Participants received €7 per hour
or course credits, with Experiment1 taking approximately 90 minutes. The study was
approved by the Faculty Ethics Review Board of Utrecht University (protocol number
21-0297).
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Apparatus

Monocular gaze location was recorded with an EyeLink 1000+, at 1kHz. Stimuli were
presented on a 27" 2560x1440 LCD monitor at 100Hz. Participants were seated and
stabilized with a chin- and forehead rest at 67.5cm from the monitor. The experiment
was implemented with PyGaze (Dalmaijer et al., 2014).

All gaze metrics are reported in degrees of visual angle (°). Before the start of the
experiment, and between each block, the eye tracker was calibrated and validated
with a 9-dot grid, allowing a mean error of 0.5° and a maximum per-dot error of 1.0°.
The quality of calibration was automatically evaluated throughout the experiment
while each pre-trial fixation cross was presented. If the gaze prediction error exceeded
1.5° for more than two consecutive trials, the eye tracker was re-calibrated.

Fixations were detected using 12MC in Python (Hessels et al, 2017). All fixation
candidates shorter than 60 ms were removed, and fixation candidates which were
separated by less than 1° distance were merged. This approach has been shown to
remove variation in gaze event detection between eye trackers and fixation detection
algorithms (Hooge et al., 2022).

Stimuli

Stimuli were a subset of complex shapes (introduced by Arnoult, 1956), which are
commonly used in VWM research (e.g., Hoogerbrugge et al., 2023; Sahakian et al., 2023;
Somai et al.,, 2020). The stimuli could be shown in four configurations (90° rotations)
and in 8 colors, equally spaced along a perceptually uniform color map (HSLuv). One
of the original 30 stimuli was removed due to its high rotational symmetry, resulting
in 928 unique stimuli. Stimuli were circa 1.5° in size.

Task and design

Participants performed a visual search task, in which the screen was divided into
two sections by a vertical line; a smaller template area (left) and a larger search
area (right; Figure 3.1). The template area occupied the leftmost quarter (12.7°) of the
screen and contained either 1, 2, or 4 templates. Templates would only be shown when
gaze was detected in the template area, such that participants could not peripherally
attend templates and search items simultaneously. The search area occupied the
rightmost three quarters (38.1°) of the screen and contained either one target and
16 distractors in target-present trials, or no target and 17 distractors in target-absent
trials. A stimulus was considered a target only if it exactly matched one of the
templates (shape, colour and rotation). 75% of trials were target-present trials.

Each trial would only start if a fixation was detected at a central fixation cross.
Participants indicated for each trial whether one of the stimuli in the search area
matched a template or not by pressing the 'z-key or '/’-key, respectively. There was
no time limit. Participants were instructed to be as fast and accurate as possible,
and received feedback after their response ('Correct’ or 'Incorrect’ in blue or red text,
respectively).

Conditions with 1, 2, and 4 templates were blocked and block order was counter-
balanced according to a Latin square. Within each condition, participants searched
for 6 unique template sets (thus resulting in 18 unique template sets in the whole
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experiment), each of which was repeated 25 times consecutively. Across those "repe-
titions", the template set remained the same, but distractors and their locations were
randomly drawn without replacement. A stimulus that had previously been used as
a template could not be used as a template nor as a distractor. Participants were
informed about the repetitions before the experiment, and were instructed on-screen
whenever a new template set was introduced. The experiment was preceded by four
repetitions of two template sets as practice trials.

Long-term memory test

After the main body of the experiment was finished, participants were given a five-
to ten-minute break. Their recognition of the template sets they had encountered
during the experiment was then probed. 18 Template sets from the experiment were
presented in random order, interleaved with 6 foils (75%/25%). Due to an error in the
code, the true template sets could be probed multiple times - repeated occurrences of
atemplate set were discarded from analysis (this mistake was fixed after Experiment 1).
None of the actual templates could occur within the foil sets. Participants indicated
whether they recognized the template sets (yes/no). Participants were informed
before the start of the experiment that there would be a long-term memory test.

Analysis

We report four key outcome variables: (a) Gaze Crossings to Templates: the number
of times that participants moved their gaze from the search area to the template
area as a measure of sampling behaviour; (b) Dwell Time on Templates: the sum
of all fixation durations in the template area per repetition as an indicator of how
much time participants spent encoding templates (in milliseconds); (c) Response
Time: the response time for each repetition, measured from trial onset until keypress
(in seconds); (d) Balanced Accuracy, which takes into account the unequal balance

Template set 1 Template set 2

LTM test

Repetition 0 Repetition 0

Repetition 1 Repetition 1

————p

Figure 31: Experimental design. Participants searched whether one of the templates on the left-hand side
of the vertical bar (12.7°) was present in the search array to the right-hand side of the vertical bar (38.1°).
Participants repeated this task twenty-five times in a row, and search trials had no time limit. Across
those twenty-five repetitions, the template set remained the same, and the search array was changed.
After twenty-five repetitions, participants were shown a screen with the text "New templates". Five to ten
minutes after the experiment, long-term memory of template sets was probed. Stimuli are not to scale.
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of target-present and target-absent trials (calculated as the mean of sensitivity and
specificity; 1.0 denotes perfect accuracy, 0.5 denotes chance-level accuracy; Brodersen
et al,, 2010).

For Gaze Crossings to Templates, we computed the mean over all six template sets
per participant, per repetition. For Dwell Time on Templates and Response Time, the
median was computed instead. Balanced Accuracy was also computed over all six
template sets, per participant, per repetition.

For statistical analyses, we split each outcome measure into 5 equally sized bins
(repetitions 0-4, 5-9, etc; non-binned figures are reported in the Supplementary
Figures 1 & 3). All trials were used for analyses, including target-absent trials and
incorrectly-responded trials (unless stated otherwise). Analyses using only correctly-
answered target-present trials provided conceptually similar results.

We computed repeated-measures ANOVAs (5 bins x 3 set sizes), and report main
effects of bin and template set size, as well as interaction effects between bin and set
size. If the assumption of sphericity was violated for an outcome variable, we report
corrected ANOVAs (Greenhouse-Geisser if e < 75, otherwise Huynh-Feldt; following
Abdi, 2010).

3.2.2 Results

When a new template set was introduced, participants initially inspected the template
area M =124 (SD = 0.36), M = 1.89 (SD = 0.49), and M = 3.21 (SD = 1.01) times for 1,
2, and 4 templates, respectively. The number of inspections generally decreased
as template sets were repeated (F (2.2, 30.4) = 76.07, p < .001, 72 = .85; Figure 3.2A),
and the degree of this decrease differed between set sizes: the number of gaze
crossings decreased faster relative to the initial repetition for one template than for
two templates, and faster for two templates than for four templates (interaction effect
F(2.6,36.2) = 421, p = .015, 72 = 23; Supplementary Figure 2A). Notably, participants
on average still inspected the template area almost twice in the very last repetition
of each template set when searching for four templates (M = 179, SD = 1.30). They
did so in half of the final repetitions of each template set (M = 0.51, SD = 0.69) when
searching for two templates — highlighting the persistence of resampling behaviour.
Only when searching for one template did participants almost stop resampling in
the last repetition of each template set (M = 0.09, SD = 014).

Similarly, the amount of time spent inspecting templates per repetition strongly
dropped when a template set was first repeated, and then slowly decreased over the
course of repetitions. Overall, participants dwelled longer when more templates were
presented (F (12,17.4) = 36.99, p < .001, 2 = 73), and dwelled shorter over the course of
repetitions (F (1.6, 22.2) = 33.37, p < .001, 2 = 70; Figure 3.2B). Additionally, the degree
of decrease in dwell time was different per set size: dwell times decreased faster
when searching for one and two templates than when searching for four templates
(interaction effect F (2.5, 351) = 8.66, p < .001, n2 = 38; Supplementary Figure 2B).

Participants needed longer to complete the search task when searching for greater
set sizes, F (2, 28) = 67.0, p < .001, 72 = .83 (Figure 3.2C). Furthermore, response
times decreased as template sets were repeated (F (21, 29.8) = 26.37, p < .001, 7. =
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Figure 3.2: Experiment 1 outcome measures. Data was aggregated over all six template sets per participant,
split per template set size and binned in sets of five repetitions. The subfigures show across-participant
(N=15) averages, + 95% within-participant confidence intervals (Morey, 2008).

65), and this decrease differed between set sizes: response times decreased faster
when searching for one or two templates than when searching for four templates
(interaction effect F (4.6, 64.4) = 3.62, p <.001, 72 = .21; Supplementary Figure 2C).

Participants achieved higher accuracy when searching for fewer templates F (1.3, 18.2)
=14.07, p <.001, 72 = .50 (Figure 3.2D), but did not get better or worse as template sets
were repeated (p = .28), nor was there an interaction between number of templates
and number of repetitions (p = .32).

3.2.3 Interim discussion

Our findings show that resampling behaviour is quite persistent when visual search
templates remain available. Even after twenty-five repetitions of the same templates,
participants still inspected those templates almost twice per trial when searching for
four templates, and once every two trials when searching for two templates. Only
when searching for one single template did participants almost stop resampling.
Over the course of those twenty-five repetitions, participants became quicker at
completing the task, but accuracy remained stable over time.

74



These findings raise the question whether participants resampled templates because
it helped them maintain high accuracy (i.e., template availability was necessary for
accurate maintenance of template representations in memory). To test whether
resampling was strictly necessary even after many repetitions, we ran a follow-up
experiment and tested whether participants could maintain high accuracy if templates
could not be inspected anymore. In Experiment 2, we allowed participants to build
up memory representations by keeping templates available for inspection in the
first fifteen repetitions of a template set, but removed the templates for the last ten
repetitions.

3.3 Experiment 2

3.31 Methods

Experiment 2 followed the same design, procedure, and analysis as Experiment 1,
except for the following: Fourteen participants performed the experiment (12 female,
Mg =21.6), one of which was an additional participant to replace a corrupted dataset.
Participants searched for 2 or 4 templates. In each condition, 8 unique template
sets were presented (resulting in 16 unique template sets across the experiment),
each repeated 25 times. Importantly, templates could not be inspected in the last 10
repetitions of each template set. The template area was colored a darker shade of
gray in those repetitions. Participants were made aware of this before the experiment,
but were not provided with the actual repetition numbers. In the long-term memory
test, all 16 template sets were probed in random order, interleaved with 16 foils.

The number of gaze crossings and dwell times were analyzed without taking into
account the last 10 repetitions, given that templates could not be inspected in those
repetitions.

3.3.2 Results

Similar to Experiment 1, when a new template set was introduced, participants initially
inspected the template area M = 213 (SD = 0.81) and M = 4.38 (SD = 2.31) times for
2 and 4 templates, respectively. The number of inspections again decreased as
template sets were repeated (F (1.2, 15.9) = 74.87, p < .001, 7 = .85; Figure 3.3A), and
the degree of this decrease differed between set sizes: the number of inspections
decreased faster relative to the initial repetition when searching for two templates
than when searching for four templates (interaction effect F (2, 26) = 14.53, p < .001,
n3 = 53; Supplementary Figure 4A). Comparing between Experiments 1 and 2 (only the
repetitions in which templates were available for inspection), there was an interaction
effect between experiment and the number of repetitions (F (1.3, 36.0) = 8.85, p =
.003, 72 = .25); participants decreased the number of inspections more quickly in
Experiment 2 (Figure 3.4A). Notably, however, the total number of gaze crossings made
in the first fifteen repetitions was similar between both experiments. When searching
for two templates, participants made M = 1278 (SD = 7.66) crossings in Experiment 1,
and M =10.92 (SD = 7.34) crossings in Experiment 2 (t (27) = 0.67, p = 51, d = 25). When
searching for four templates, participants made M = 34.04 (SD = 15.61) crossings in
Experiment 1, and M = 28.98 (SD = 1213) crossings in Experiment 2 (t (27) = 0.97, p =
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34, d = .36). As such, participants had overall seen templates an equal amount of
times in both experiments — but approached the first fifteen repetitions differently in
Experiment 2 than in Experiment 1.

This finding is further reflected by dwell time in the first fifteen repetitions; partici-
pants initially dwelled longer than in Experiment 1 but decreased their dwell times
more quickly (interaction effect F (1.2, 32.1) = 6.76, p = .011, n5 = .20; Figure 3.4A). However,
overall, participants spent an equal amount of total time inspecting templates in
the first fifteen repetitions of both experiments. When searching for two templates,
participants had dwelled M = 4.86 (SD = 311) seconds in Experiment 1, and M = 5.61
(SD = 3.47) seconds in Experiment 2 (t (27) = -0.61, p = .55, d = -23). When searching for
four templates, participants had dwelled M = 34.04 (SD = 15.61) seconds in Experiment
1, and M = 28.98 (SD = 1243) seconds in Experiment 2 (t (27) = -0.81, p = .43, d = -.30).
Within Experiment 2, the amount of time spent inspecting templates per repetition
again initially dropped when a template set was repeated, and then slowly decreased
further over the course of repetitions, F (1.2, 15.2) = 52.65, p <.001, 72 = .80 (Figure 3.3B).
Overall, there was a set size effect on dwell time (F (1, 13) = 25.52, p < .001, 72 = .66),
and the degree of decrease in dwell time across repetitions was different per set
size: dwell times decreased faster when searching for two templates than when
searching for four templates (interaction effect F (1.2, 161) = 14.24, p < .001, 2 = 52;
Supplementary Figure 4B) .

Participants again needed more time to complete the search task when searching for
greater set sizes, F (1, 13) = 57.39, p < .001, n2 = .82 (Figure 3.3C). Furthermore, response
times decreased as template sets were repeated (F (2.0, 26.2) = 244, p < .001, 7, = .65),
and this decrease differed between set sizes: response times decreased faster when
searching for two templates than when searching for four templates (interaction
effect F (2.3, 29.8) = 5.0, p = .01, 2 = 28; Supplementary Figure 4C). Importantly,
participants did not become slower or faster after template removal: There was
no significant difference in response time between the last five repetitions before
template removal and the repetitions thereafter, nor the final ten repetitions without
templates. Comparing between the two experiments (analyzing all repetitions, but
only the two- and four-template conditions), there was no main effect of experiment
on response time (F (1, 27) = 010, p = 0.749), nor were there interaction effects with
template set size (p = .378) or the number of repetitions (p = 147; Figure 3.4A).

Participants again achieved higher accuracy when searching for fewer templates (F (1,
13) = 8.0, p = 0.014, 0, = .38, Figure 3.3D). Generally, participants did not get better or
worse over time (p = .083). Strikingly, accuracy was not significantly different between
the last five repetitions before template removal and the five repetitions after removal
(e.g, 4 templates; t (13) = 170, p = 11, d = .45). To further test for the absence of a drop
in accuracy after template removal, we used Bayesian ANOVAs to test for the absence
of effects (BFg;). Comparing bins 2, 3, 4 and 5 (i.e., repetitions 5-24), we found evidence
for the absence of a main effect of bin on accuracy; BFy; = 2.61. Furthermore, there
was moderate evidence for the absence of interaction effect between the number of
templates and bin on accuracy; BFg; = 5.99. Post-hoc t-tests further indicated weak
evidence for the absence of effects between bins 3-4 (BFy; = 1.87) and bins 3-5 (BF;
= 2.30). Besides the former results, we tested the 4-template condition separately,
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since that is where the possible drop in accuracy seems most pronounced. Testing
bins 2-5, again there was evidence for the absence of an effect of bin on accuracy;
BFg1 = 2.51. Although these tests do not provide conclusive evidence for the absence
of effects, they were consistent regardless of how the effects were tested. These
findings suggest that template representations in memory were strong enough to
maintain high accuracy. Furthermore, comparing between the two experiments (all
repetitions; 2 and 4 templates), there was no significant effect of experiment version
on accuracy (p =.993), nor were there interaction effects with template set size (p =
962) or the number of repetitions (p = .473; Figure 3.4A).

3.3.3 Interim discussion

Experiment 2 conceptually replicated the findings of Experiment 1. Although partici-
pants seemed to use a different external sampling strategy in Experiment 2 than in
Experiment 1 (they sampled more early on, and decreased this more quickly), they
had actually visited the template area equally frequently and for the same duration
at the end of the first fifteen repetitions as in Experiment 1. Together, our findings
highlight that participants did not strictly need to keep resampling templates in order
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Figure 3.4: (A) Outcome measures as reported in Figure 3.2 and Figure 3.3, collapsed across set sizes 2 and
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intervals (Morey, 2008). (B) Accuracy (calculated as balanced accuracy) on long-term memory tests.
Accuracy of 0.5 denotes chance-level performance, 1.0 denotes perfect accuracy.

to boost speed or accuracy, supporting our notion that participants are persistent in
their resampling behaviour, even if it does not aid standard performance metrics.

To understand why resampling was so persistent, we first examined within-trial
outcomes to further elucidate whether there was indeed no short-term gain to
resampling behaviour. Thereafter, we explored whether participants optimized for
longer-term gain, in which case performance on long-term memory tests should
improve as a result of more frequent and longer inspections during the task. Finally,
we investigated whether participants resampled in order to boost metacognitive
confidence rather than improve speed or accuracy.

3.4 The purpose of search template inspections

3.41 Short-term efficiency of template inspections

Considering a possible differentiation between short- and long-term optimization, we
investigated whether there was an immediate within-trial benefit to making multiple
template inspections (as observed in Hoogerbrugge et al,, 2023). To analyze this, we
combined data from Experiments 1and 2 and excluded all repetitions from Experiment
2 in which templates could not be inspected. Furthermore, we excluded the first five
repetitions of all template sets, given that we wanted to investigate the usefulness of
resampling when templates have already been seen several times. Finally, we limited
the data to trials with at most four gaze crossings in order to ensure sufficient data
for analysis.

Linear Mixed-Effect (LME) models showed that there was a significantly positive
effect of the number of gaze crossings to templates on response time, meaning that
participants were generally more than a second slower at completing the task for
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lines denoting the 95% Confidence Interval. Analyses were performed using Linear Mixed Effect models,
and as such the regression lines primarily serve illustrative purposes.

each additional crossing they made (8 = 1.29, 95% Cl [1.01, 1.59], p < .001; Figure 3.5A; see
Supplementary Materials section 2 for a description of LMEs). Furthermore, making
additional gaze crossings to the templates affected accuracy neither negatively nor
positively (LME 3 = -0.01, 95% Cl [-0.04, 0.02], p = .432; Figure 3.5B).

In sum, making additional template inspections was not immediately beneficial
for speed. In the case of accuracy, we do not know whether a trial would have
been responded to correctly if those additional crossings were not made. Therefore,
additional crossings (> 0) may have served to maintain a high level of accuracy
instead of increasing it. Given that no direct within-trial benefit of resampling could
be observed, we hereafter investigated possible long-term benefits.

3.4.2 Long-term efficiency of template inspections

After both experiments, all participants except one could recognize templates above
chance level (Meyp1 = 077, SD = 044; Megpe = 0.85, SD = 0.08; Figure 3.4B). Thus,
participants could draw at least a portion of search templates from LTM during
the task — although it remains unclear whether they actually did so, or rather kept
templates active in working memory.

Although average LTM accuracy was descriptively higher after Experiment 2, the
difference between experiments was not significant (t (27) = -1.87, p = .073, d = -0.69).
Therefore, having been able to inspect templates more often (Experiment 1) did not
link to better or worse LTM representations than in Experiment 2, in which participants
had to search without resampling for the last ten repetitions.

In order to investigate whether resampling templates was globally rather than locally
optimized behaviour, we tested whether the amount and duration of inspections
during the search task predicted later LTM test accuracy. We limited the data to trials
with at most four gaze crossings in order to ensure sufficient data for analysis, and
then compared the number of inspections made to LTM test accuracy, per template
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set. Participants scored better on the LTM test for larger set sizes (LME 3 = 0.60, 95%
Cl [043, 1.08], p = .013). A greater amount of inspections of a template set during the
experiment was associated with worse rather than better recognition of that template
set afterwards (LME 8 = -0.63, 95% Cl [-117, -0.09], p = .022). To illustrate: Template
sets which were on average inspected once or less per trial were recognized with
an accuracy of M = 076 (SD = 015). Inspecting template sets once up to three times
was linked to similar accuracy, but with greater variance; M = 075 (SD = 0.26) for
one-to-two crossings and M = 0.73 (SD = 0.39) for two-to-three crossings, respectively.
Template sets which were on average inspected three to four times per trial were
recognized worst, M = 0.57 (SD = 0.44). There was no effect of dwell time on templates.

The finding that making more inspections was linked to worse LTM recognition, and
that dwell time had no effect on it, suggests that the quality of LTM representations
was not a result of less elaborate encoding during the search task. Rather, it suggests
that participants at least partially inspected template sets more often when they
recognized that their LTM representations of those templates were worse. However,
given that those additional inspections did not actually improve LTM performance, it
is possible that participants may not have had the confidence to act on their template
representations in memory. Therefore, these inspections may have served to boost
metacognitive confidence rather than to boost the actual memory representations
(in line with Desender et al,, 2018; Sahakian et al,, 2023).

3.4.3 Template inspections for confidence boosts?

If template re-inspections are used to boost metacognitive confidence, this should be
reflected in an increased number of inspections in target-absent trials (similar to e.g,
more fixations and longer response times in target-absent search; Gilchrist & Harvey,
2000; Wolfe et al., 2010). Specifically, when there is no target in the search array, one
may doubt whether there was indeed no target or whether one has overlooked it. In
that case, it reinspecting the templates may be a means of boosting confidence that
the target was not overlooked. To this end, we combined data from both experiments
(excluding the last 10 repetitions from Experiment 2 in which templates were not
available), split per template set size and whether trials were target-present or -
absent. Participants indeed made more gaze crossings to templates in target-absent
trials overall (F (1, 14) = 45.32, p < .001, 72 = 76; Figure 3.6A), and did this primarily
when searching for two templates (t (28) = 6.75, p < .001, Cohen’s d = 1.25) and when
searching for four templates (t (28) = 9.56, p < .001, d = 1.77).

We additionally investigated behaviour which could not be caused by the experimental
manipulation of target presence. Rather, we tested whether there was an increased
number of inspections after giving an incorrect response, which is arguably a more
natural cause of uncertainty regarding memory representations. Indeed, participants
made more gaze crossings to templates after making a mistake in the previous trial,
F (1, 14) = 2827, p < .007, 72 = .67 (Figure 3.6B). Specifically, participants inspected
templates more frequently after a mistake when searching for one template (t (14)
=375, p =.002, d = 97) and when searching for four templates (t (28) = 4.54, p <
.001, d = .84). Although an incorrect response could be caused by poor memory
representations, we have already shown that additional inspections did not strongly
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aid accuracy. It is therefore likely that a large portion of inspections after errors were
used to boost confidence rather than to boost memory representations.

Finally, fixation duration on search targets may reflect the internal decision-making
process regarding whether a target or a distractor is fixated (e.g., Becker, 2011; Hooge
& Erkelens, 1996; Wolfe, 2021; Wolfe et al,, 2022) - and as such, shorter fixations
on targets may indicate a higher degree of confidence. We analysed target fixation
durations as a function of the number of crossings in each trial. To ensure sufficient
data, we included only trials with at most 1, 2, or 4 crossings for each template set
size respectively. Participants indeed fixated targets 9 ms less for each additional
crossing they made towards the templates (LME 8 = -910, 95% Cl [-12.0, -6.21], p <
.007; Figure 3.6C), further supporting the notion that decision time is decreased due
to higher metacognitive confidence. It should be noted, however, that participants
also fixated distractors longer with each additional crossing, although by less than 2
ms (LME /3 = 1.96, 95% Cl [0.67, 3.24], p = .005).

3.5 General Discussion

When to-be-remembered information remains available for inspection throughout
a trial, we often prefer to offload working memory in favour of sampling external
information only when needed - largely as a means of limiting cognitive effort (Bing
et al, 2023; Draschkow et al., 2021; Droll et al., 2005; Hayhoe et al,, 2003; Hoogerbrugge
et al., 2023; Koevoet, Naber, et al., 2023; Melnik et al., 2018; Risko & Dunn, 2015; Risko
& Gilbert, 2016; Sahakian et al.,, 2023; Somai et al., 2020; Triesch et al,, 2003). Besides
limiting effort, being able to resample external information in visual search is also
considered beneficial for task speed and accuracy, at least when every trial requires
us to search for new templates (e.g,, Hoogerbrugge et al,, 2023; Li et al., 2023).

However, when we repeatedly search for the same templates, it may instead be less
cognitively demanding to build strong memory representations of those templates
early on, and decrease sampling behaviour as the search task repeats. In two ex-
periments, we investigated whether resampling of external information was still
the preferred strategy when participants searched for the exact same templates in
twenty-five consecutive trials. In both experiments, when searching for a new, unfa-
miliar template set, participants made multiple gaze crossings towards the template
area per trial — in line with aforementioned findings on short-term optimization. As
template sets were repeated, participants sampled external information less, but did
not actually stop sampling as long as templates remained available for inspection. In
Experiment 2, we removed access to templates after fifteen repetitions, and showed
that participants did not strictly need to resample templates in later repetitions in
terms of task speed and accuracy. Accuracy remained high when templates were
made unavailable, hence our statement that resampling behaviour is persistent.

In the short term (i.e., within trials), more (re)sampling was associated with longer
trial completion times and no benefit to accuracy. This finding deviates from previ-
ous studies (e.g., of visual search; Hoogerbrugge et al., 2023; Li et al., 2023), which
introduced new templates on every trial. We therefore investigated whether resam-
pling in our repeated search task followed a different trade-off (storing in memory
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Figure 3.6: (A) Number of gaze crossings to templates, split per set size and whether trials contained a
target or no target. (B) Number of gaze crossings to templates, split per set size and whether the previous
trial was correct or incorrect. Bars in A and B denote across-participant averages (N=15 for set size 1, N=29
for set sizes 2 and 4), & 95% within-participant confidence intervals (Morey, 2008). (C) Fixation duration on
target, split per condition and the number of gaze crossings to templates. In order to ensure sufficient
data for analysis, the number of crossings was cut-off at 1, 2, and 4 crossings for set sizes 1, 2, and 4,
respectively. Scatterpoints show non-aggregated data (i.e,, all trials without grouping). Larger markers
denote medians over these trials, + 95% within-participant confidence intervals. Note: paired samples
t-tests *** p <.001, ** p <.01; n.S. p > .05.

versus sampling externally) than in those studies, and served long-term rather than
short-term gain. Five to ten minutes after the main body of the experiment was
completed, all but one participant could still recognise template sets that they had
encountered at above chance level, meaning that most templates were fairly strongly
represented in LTM. It should be noted that participants could have responded that
they recognised a template set if they remembered only a subset of a probed set,
or the inverse if they recognised none of the foils — this may therefore provide an
inflated estimate of how well all templates were represented in LTM. Furthermore,
merely being frequently exposed to a target can already strengthen its representation
in long-term memory (Carlisle et al., 2011; Ebbinghaus, 1885; Greene & Soto, 2012;
Hout & Goldinger, 2010; Pashler et al., 2007; Woodman et al.,, 2001, 2007), so our
LTM test does not elucidate whether templates were already stored in LTM after
the first few repetitions (and then consolidated through repeatedly activating those
representations in memory), or if resampling in later repetitions still specifically
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helped to strengthen template representations. Somewhat surprisingly, we found
that more resampling during the search task was actually linked to worse recognition
on the LTM test, and that sampling duration did not affect this outcome. This suggests
that participants may have inspected templates more frequently when their memory
representations of those templates was worse, although it did not seem to help on
the later test.

Evidently, the trade-off between storing internally and sampling externally is different
when we know that we will have to execute the same task multiple times rather than
just once. Of course, some degree of (re)sampling was necessary to (1) initially encode
templates and (2) improve the memory quality of those templates or counteract
memory decay, but we observed a remarkable amount of seemingly 'excessive’ sam-
pling behaviour, given that it often did not contribute to short-term or long-term task
performance. What could then explain this behaviour? Our search task contained
relatively complex stimuli (polygons which could occur in multiple rotations and
colours) which may have been easy to confuse with similar items during search -
although the detrimental effect of stimulus complexity on one’s ability to memorize
and use them does diminish as a result of repeated exposure (Bethell-Fox & Shepard,
1988; Eng et al.,, 2005). Related, memory contents may be erroneous or may degrade
over time (Baddeley & Hitch, 1974; Gold et al,, 2005; Hardt et al., 2013; Van der Stigchel,
2020), perhaps even more so for complex stimuli. Besides limiting cognitive effort by
offloading memory, resampling valid and stable external information may therefore
be preferable over completely relying on 'fallible’ memory. In other words, partic-
ipants may not have had the confidence to act on their template representations
in memory, or increased their threshold for which level of confidence they were
willing to act on. This idea is in line with Sahakian et al. (2023), who reported that
participants sometimes resample external information even when there is still suffi-
cient information in working memory, and that this depends on the ease with which
external information can be accessed. Similarly, Desender et al. (2018) showed that
participants regularly chose to resample external information due to low subjective
confidence, even if objective task accuracy was equal. As such, we explored whether
resampling behaviour was partially used to boost metacognitive confidence rather
than improving the quality of memory content. Participants inspected templates
more often in target-absent trials and after they had given an incorrect response,
which indicates that resampling behaviour is influenced by uncertainty stemming
from both current and previous trials (Gilchrist & Harvey, 2000; Wolfe et al., 2010).
They also made shorter fixations on targets when they had inspected templates more
often in that trial, which may indicate that the decision process was faster due to a
higher degree of confidence regarding the quality of memory content (Becker, 2011;
Hooge & Erkelens, 1996; Wolfe, 2021) .

Perhaps, participants spent overall more effort during the task - encoding items
more actively or executing the task more attentively — when they knew that templates
would become unavailable, although the effect of increased effort on improvement of
memory quality is debatable (Braver et al,, 2007; Koevoet, Naber, et al,, 2023; Master
etal, 2023; Tyler et al., 1979; Zacks et al., 1983). Alternatively, participants resampled so
often because they prioritized accuracy over speed. However, due to the nature of the
task, if participants truly emphasized accuracy, one would expect almost no mistakes
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(because they could resample ad infinitum). Accuracy in both experiments was high,
but not perfect - suggesting that participants did give speeded responses. Future
research may attempt to elucidate how the persistence of resampling behaviour is
affected by speed-accuracy-effort trade-offs.

Making saccades towards templates may also be habitual behaviour. The template
area became a darker shade of grey when templates could not be inspected in
Experiment 2 — yet, participants sometimes made saccades towards the template
area in the first repetition even when they were clearly unavailable (Figure 3.3A),
which could point to habitual or reflexive saccadic behaviour. Making a saccade is
relatively effortless, and reflexive eye movements have been frequently observed in
previous studies (e.g.,, oculomotor capture; Theeuwes, 2012; Theeuwes et al,, 1998), in
which involuntary saccades were often made towards novel or salient (task-irrelevant)
objects, and gaze could stay at those items for up to 150 ms. In the current study,
templates only appeared on screen when gaze was detected in the appropriate
location, which eliminates abrupt-onset saliency as factor. Furthermore, individual
fixations on templates were generally longer than 150 ms, suggesting that participants
mostly made gaze crossings to the template area to actively inspect items rather
than out of habit or reflex.

Participants were not told specifically after which repetition templates would become
unavailable, so they would be less inclined to postpone elaborate encoding of
templates until the last repetition before removal. Participants did seem to change
their behaviour somewhat over the course of the experiment, as they learned to
estimate when templates would be removed. In later template sets, participants
sampled slightly less often and for shorter amounts of time, but the behavioural
pattern remained similar: Participants frequently sampled templates when possible.
Furthermore, overall response times and accuracy did not change significantly over
the course of the experiment. In Supplementary Materials section 3, we report
on these possible learning effects in more detail. Moreover, the time-points at
which participants inspected templates did not change over the course of trials; see
Supplementary Materials section 4.

Participants may have persistently resampled external information for various under-
lying reasons - i.e,, due to individual differences in their working memory capacity,
their willingness to load memory, willingness to utilize memory content, and in base-
line metacognitive confidence. Together, our findings suggest that at least three
factors play a role in the persistent resampling of external information. Besides the
unavoidable initial encoding of search templates, and a regular revisit to rehearse
and enhance the quality of memory representations, we showed that the boosting of
metacognitive confidence is at least one of the additional reasons for this behaviour.
But this is not a comprehensive account and other factors may be at play. Moreover,
we can only infer that these reasons are at play across the task but cannot estimate
this for individual participants or trials.

We have here provided a novel paradigm which may provide further insights into
visual search at the intersection of guided search and hybrid search paradigms.
Generally, investigations into guided search employ either singletons or novel items
on each trial (Liesefeld et al., 2024; Wolfe, 2021), whereas hybrid search investigates
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the interplay between searching through an external array and searching through
(activated long-term) memory for many items (Drew & Wolfe, 2014; Drew et al., 2017;
Wolfe, 2012). Our paradigm allows to investigate whether participants transition from
working-memory-guided search towards a more hybrid search approach as search
templates are repeated and consolidated in long-term memory. For example, after
external templates were hidden in Experiment 2, participants may have suddenly
switched from maintaining template representations in VWM towards retrieving those
templates from LTM. In that case, the transient (but non-significant) drop in accuracy at
that point potentially reflects a switch cost associated with activating representations
in, or the retrieval of information from, LTM (Mayr & Kliegl, 2000; Rogers & Monsell,
1995). Moreover, response times remained stable during this period, meaning that
if a transition between VWM and LTM indeed occurred, one is not necessarily faster
than the other.

Together, our findings illustrate the persistence with which external information is
resampled, even after twenty-five consecutive searches for the same templates. We
here showed that, when eliminating the need to offload working memory, participants
still resample external information, but partially to boost metacognitive confidence
rather than enhancing the quality of memory representations. As such, we argue
that the commonly reported trade-off between storing in memory versus just-in-time
sampling externally (which is considered to be an optimization of the expenditure of
cognitive effort associated with working memory maintenance) should not only be
investigated in a short-term time frame, but should also take into account longer-term
optimizations.

Supplementary Materials and Data Availability
All data and Supplementary Materials may be retrieved via the Open Science Framework
https://osfio/nrsge/. Example videos of trials can be viewed at https://osf.io/hyodm/.
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Abstract

Investigations into people’s ability to use multiple working memory representations to concur-
rently search for targets have led to mixed findings. Although the discourse has predominantly
centered around capacity limits in multi-target search, we here propose that people can switch
between sequential and concurrent search. In Experiment 1, manual responses and oculomotor
behaviour revealed that participants could search sequentially, and concurrently for at least
two targets, when instructed. In Experiments 2a and 2b, participants were free to choose how
they searched. Trial-level modelling showed that participants primarily used sequential and
concurrent search as specific modes, and flexibly adjusted between either mode dependent
on template set size, template availability, stimulus properties, and individual preference. Our
findings stress the dynamic and adaptive nature of visual search. Moreover, understanding
that different search modes can be flexibly picked as ‘tools from the toolbox’ may reconcile
inconsistencies in prior findings.
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41 Introduction

When assembling a piece of furniture, you will often need several different screws to
finish one set of instructions. In order to achieve this, you may look at the assembly
manual, memorise one screw, and search for it among the pile of hardware before
moving on to the next screw.

When humans perform such a search task, attention first needs to be directed at the
image of the to-be-found item (an external target template; Hoogerbrugge et al., 2023),
which must then be encoded into visual working memory (VWM) as an internal target
template (Awh et al., 2006; Fougnie, 2008). The item must subsequently be actively
maintained in VWM, such that its representation can be used to guide attention
towards locations in the search array which are most likely to contain a matching
target (Desimone & Duncan, 1995; Gunseli et al., 2014; Wolfe, 2021). Once a target
candidate is selected and attention is shifted towards that candidate, the attended
item must be compared to the internal template in VWM, and a target/no-target
decision is made (Hout & Goldinger, 2015; Moore & Wolfe, 2001; Ort & Olivers, 2020;
J. Palmer et al., 2000).

Alternatively, you may solve the furniture assembly task by attempting to memorise
multiple screws and then search until you have found all of them before moving onto
the next set of instructions. There are conflicting accounts regarding how attention
is deployed during multi-target search, and whether multiple distinct templates in
working memory can be used to guide attention concurrently. By some accounts,
humans are able to hold multiple representations simultaneously activated in VWM,
which can then be used to guide search (Beck & Hollingworth, 2017; Beck et al., 2012;
Godwin et al, 2015; Grubert et al,, 2024; R. S. Williams et al,, 2023). Other studies
have opposed this account of simultaneous control, arguing that, while multiple
representations can be stored in VWM, only one can be used to guide attention in
search at any moment in time (Houtkamp & Roelfsema, 2009; Ort et al., 2017, 2019;
Van Moorselaar et al.,, 2014). As such, it is yet unclear whether or not fully concurrent
search is possible.

Even if humans can search for multiple targets concurrently, they may not always
choose to actually do so. It has been established that humans often prefer to rely on
VWM as little as possible, and the degree of this reliance depends on various factors,
such as the ease with which external information can be accessed (Ballard et al., 1995;
Boing et al.,, 2023; Draschkow et al., 2021; Hoogerbrugge, Strauch, Boing, et al., 2024;
Qing et al., 2024; Somai et al., 2020), the complexity of stimuli (Hoogerbrugge et al.,
2023), metacognitive factors (Hoogerbrugge, Strauch, Nijboer, & Van der Stigchel,
2024; Sahakian et al., 2023, 2024), and individual differences in preferred working
memory load (Hoogerbrugge et al.,, 2023; Meyerhoff et al,, 2021). One may therefore
ask how often humans would opt to search concurrently when also given the option
to do it sequentially.

We posit that, even if humans can use multiple VWM representations to guide atten-
tion, they may not consistently utilize this capability, dependent on both task-related
and individual factors — which could partially explain discrepant findings in the liter-
ature (cf Fratescu et al, 2019). In the aforementioned furniture example, this could
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either lead one to memorise a single screw at a time and search fully sequentially,
or to memorise all items in a single inspection and then search concurrently, or even
to memorise all items but still search for them sequentially (i.e., keep other items in
accessory states; Olivers et al.,, 2011). In the present study, we aimed specifically at
uncovering whether participants can and do use multiple VWM representations to
guide attention across a search array when given the choice. Furthermore, machine-
learning methods allowed us trial-level insights into whether participants searched
sequentially or concurrently as specific search modes, or whether they employ a
mixture of both modes on a trial level. Lastly, we asked to which degree the choice
for specific search modes depends on the individual and on task specifics; namely
VWM load, stimulus properties, and template availability.

4.2 Experiment 1: Instructed concurrent and sequential
search

Experiment 1 tested whether participants can search sequentially or concurrently
when explicitly instructed to do so. This also provided a reference profile for subse-
guent experiments in which participants were free to choose how to search.

421 Methods

Participants and procedure

Sixteen participants (15 female, Mg = 22.2; SDgge = 3.6) with normal vision and no
colour-blindness were included in Experiment 1. Three of those 16 participants were
replacements for participants who afterward indicated that they either misunderstood
the provided task instructions or did not follow them in at least one of the conditions.
The excluded datasets are available on OSF. Sample size was based on previous
studies using similar paradigms (e.g., Hoogerbrugge, Strauch, Nijboer, & Van der
Stigchel, 2024; Hoogerbrugge et al., 2023).

Prior to the experiment, participants read the information letter, signed an informed
consent form, and indicated their age and gender. Participants received €7 per hour
or course credits, with Experiment 1 taking 60-90 minutes. The study was approved
by the Faculty Ethics Review Board of Utrecht University (protocol number 21-0297).

Apparatus

Monocular gaze location was recorded with an EyelLink 1000+, at 1 kHz. Stimuli were
presented on a 27" 2560x1440 LCD monitor at 100 Hz. Participants were seated and
stabilized with a chin- and forehead rest at 67.5cm from the monitor. The experiment
was implemented with PyGaze (Dalmaijer et al., 2014).

All gaze metrics are reported in degrees of visual angle (°). Before the start of the
experiment, and between each block, the eye tracker was calibrated and validated
with a 9-dot grid, allowing a mean error of 0.5° and a maximum per-dot error of
1.0°. Fixations were detected using [2MC in Python (Hessels et al., 2017). All fixation
candidates shorter than 60 ms were removed, and fixation candidates which were
separated by less than 1° distance were merged (cf. Hooge et al,, 2022).
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Stimuli

Stimuli were L, T and  shapes of circa 1.27° x 1.27° in size. The stimuli could be shown
in any of four 9o degree rotations and in any of 7 canonical colours (blue, orange,
green, red, purple, pink, yellow), thus providing a set of 84 unique stimuli in total.
All stimuli were equally tall and wide, and contained an equal amount of coloured
pixels. Stimuli in the search array were separated from each other by circa 2.54°. As
such, it was difficult to peripherally distinguish shapes — making stimulus colour the
primary feature to guide attention across the search array.

Task and design

Participants performed a visual search task, in which the screen was divided into two
sections by a vertical line; a smaller template area and a larger search area (Figure 41).
The template area occupied the leftmost third (16.8°) of the screen and contained
either 2 or 4 equally spaced templates. Templates would only be shown when gaze
was detected in the template area, such that participants could not covertly attend
templates while their gaze was in the search area. The search area occupied the
rightmost two-thirds (32.9°) of the screen and contained a grid of 42 equally-spaced
stimuli.

Templates always differed from each other in colour, but their shapes and rotations
were identical within trials. As such, in each trial participants effectively only had
to memorise one stimulus in 2 or 4 colours. The search area contained o, 1, or 2
target stimuli in conditions with two templates, or 0-4 targets in conditions with four
templates; the other stimuli were distractors. Stimuli were only considered targets if
their shape, rotation, and colour matched one of the templates. The same target never
occurred multiple times in a trial layout. Depending on the template set size, the
search area contained two or four relevant colours (matching the template colours)
and one additional irrelevant colour (Figure 41 inset box). There were approximately
an equal amount of stimuli for each colour. Distractor stimuli could occur multiple
times in the search array.

Participants were instructed to click on all targets that they could find, and a circle
appeared around each clicked location. When participants were satisfied that they
had found all targets, they pressed the spacebar to end the trial.

Importantly, participants were instructed to search in a specific manner in each
condition. In Sequential conditions, participants were instructed to start by encoding
and searching for only the topmost template, while ignoring all other templates.
Subsequently, they were told to encode and search the next template from the top
while ignoring all others — and so on. As such, participants should have had only one
target template in memory at any given time. In Concurrent conditions, participants
were instructed to encode all templates before searching. Once they believed that
they had memorised all templates, they were instructed to search for all targets at
the same time. To encourage participants to memorise all items in the Concurrent
conditions, templates would not reappear after search onset (when gaze first crossed
from the template area to the search area).

Conditions consisted of 40 trials, which were blocked, and block order was counter-
balanced according to a Latin square. Each trial started after fixation at a central
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Encode + search at the same time
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Press space when finished

16.8° 32.9°

Figure 41: Experimental design. Participants searched whether one or more of the templates to the
left-hand side of the vertical line were present in the search array. They clicked on each target (shape,
rotation, and colour match) that they could find, and pressed the spacebar when they were satisfied
that they had found all present targets. There were 2 or 4 templates, and likewise there could be 0-2 or
0-4 targets, respectively. Stimuli in the search area could be of a relevant colour (matching one of the
template colours) or an irrelevant colour. In Experiment 1, participants were instructed to either search
sequentially or concurrently. In Experiments 2a and 2b, participant were free to choose how to search. In
Experiment 1 and 2a, all templates were of the same shape and rotation within trials (as shown in the
figure). In Experiment 2b, templates were all of the same shape but could be of different rotations.

cross. The experiment was preceded by four practice trials.

4.2.2 Analysis

Target detection order

As a metric of sequential versus concurrent search, we report the order in which
targets were clicked. For each trial, templates were assigned a Relevant colour index,
from the top-most to bottom-most template. In the case of Figure 41, Relevant colour
index 1 would therefore be orange, and Relevant colour index 2 would be green. This
ordering of relevant colours matched the instructions given to participants.

All target clicks were assigned a proportion based on the total number of clicks in
their respective trials, (i.e., 15t click out of 2, 2" out of 3, etc.), then scaled between
0 and 1 per trial. As such, the first click received value 0 and the last click received
value 1. Trials with fewer than two targets and fewer than two clicks were discarded
because no slopes could be calculated.

We used linear regression models (Lm2 in Pymers 0.81 Jolly, 2018) to estimate per-
participant slopes for target click order, and report the average estimated slope (3),
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+95% Confidence Intervals and p-values. In the 2-Sequential and 4-Sequential condi-
tions, the expected slopes of a perfect observer would be 1.0 and 0.33, respectively.
In the Concurrent conditions, the expected slopes would be 0.

Attentional guidance

Besides target click patterns, we report how frequently colours were fixated over
the course of trials. If search occurred fully sequentially, all stimuli of one template
colour should be fixated exhaustively (or until a target is found) before stimuli of the
next colour are fixated, and so on. Contrary, in fully concurrent search, all template
colours should be fixated approximately equally often across a whole trial. In all
conditions, if search could be guided effectively based on colour, the irrelevant colour
should be fixated at below-chance level.

We filtered all gaze data to retain only fixations within the search array, and each
fixation was linked to the colour of the stimulus that was nearest to fixation. Subse-
quently, each fixation in the search array was assigned to its relevant colour index as
described in the previous section. The residual colour in the search array (e.g., blue
in Figure 41) was labelled as irrelevant. Because trials contained varying amounts
of fixations and had varying response times, we report the normalised time course
of a trial, computed with the proportion of fixations made in that trial (e.g., the 5%
fixation in a trial with 10 fixations occurs at proportion .5; the last fixation occurs at
proportion 1.0). This measure was then split into 20 equally-sized bins. Within each
of those bins, we computed the percentage of fixations made on each colour in the
search array. Because participants gazed at a central fixation cross before the onset
of each trial, the very first detected fixation was usually a residual from that central
fixation — and therefore on a random colour.

To evaluate whether relevant colours were searched sequentially or concurrently,
we tested whether each relevant colour was fixated more than the other relevant
colours, using paired-samples t-tests at each binned time point. To evaluate whether
attentional guidance could be used to suppress irrelevant colours, we tested whether
the irrelevant colour was fixated below chance level using one-sample t-tests. All
statistics were computed using SciPy 112 (Virtanen et al,, 2020), and corrected for
false discovery rate within colours at o = .05 using MNE 171 (Gramfort et al., 2013).

4.2.3 Results

The number of template inspections, response times and accuracy are reported in
Supplementary Materials section 1.

Target detection order shows sequential and concurrent search under instruction

Participants could search sequentially when instructed. This is indicated by the order
of targets clicked approximating the expected slopes of 1.0 and 0.33; (Figure 4.2A).
When searching for two targets, Relevant colour 1 was clicked before Relevant colour
2, as reflected by a significant regression slope, 8 = .98, 95% Cl [.935, 1.012], p < .001
(98.96% of trials). When searching for four targets, targets were clicked in the order
in which they should be searched, 3 = 32, 95% Cl [.294, .347], p < .001.

Participants could also search more concurrently when instructed. However, for the
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two-target condition this was not perfect, as the first relevant colour was sometimes
clicked earlier than the second colour (591% versus 40.9%) 3 = 17, 95% Cl [.024, .326],
p =.026), although this slope was closer to o (the expected slope for concurrent
search) than to 1.0 (expected for sequential search). In four-target search, there was
no consistent order in which targets were clicked, providing evidence for concurrent
search, 8 = .03, 95% Cl [-.008, .061], p = 128.

Participants could apply both search modes when instructed to do so; slopes were
significantly different between sequential and concurrent conditions (2 templates t
(15) = 1112, p < .001; 4 templates t (15) = 13.46, p < .001).

Although target clicks are useful behavioural markers of sequential versus concurrent
search, they capture only a few discrete points in time. Moreover, the reported target
clicks do not inform us about guidance and may, for example, reflect a strategy in
which participants non-selectively scanned the search array. As an extension of
target clicks, we next analysed gaze behaviour as a more detailed marker of how
participants searched.

Sequential and concurrent search are distinguishable from gaze behaviour

Fixation patterns showed that participants were able to search sequentially for two
targets as well as for four targets, with colour as the main guiding feature. Participants
encoded and searched each relevant colour sequentially, while successfully ignoring
the other colours for which they were not searching at that time (as evidenced by
consecutive peaks in fixation frequency; Figure 4.2B). Moreover, and importantly,
participants were able to ignore the irrelevant colour throughout the whole trial: all
but the first time bin were significantly below chance in both two- and four-target
search. Together, these fixation patterns argue that observers were only looking for
the target colours and not just any colour, and that attentional guidance was very
effective when searching for only one target at a time.

When instructed to search concurrently, gaze behaviour was noticeably different
than in sequential search. When searching for two targets, participants fixated both
relevant colours equally often throughout trials — at no point was either relevant
colour fixated significantly more than the other (Figure 4.2B). Moreover, the irrelevant
colour was effectively ignored in all but the first time bin. Given that the first relevant
target colour was sometimes clicked before the second relevant colour, we speculate
that this colour may have been more strongly represented in VWM, causing the target
to be found first on average, without affecting attentional guidance (see General
Discussion).

Concurrent four-target search showed similar, but less pronounced, patterns. Relevant
colours received an equal amount of fixations over the course of trials, except for
in two time bins. Crucially, participants were less able to confine search to the
relevant colours and included the irrelevant colour in their search more often than
in concurrent search for two targets. The irrelevant colour was fixated significantly
below chance in only 11 out of 20 time bins (compared to 19 out of 20 in 2-Concurrent),
marking a decrease in the effectiveness of top-down attentional guidance.

In sum, we identified markers (click order and fixation patterns) of both sequential
and concurrent search, and show that both modes of search are indeed possible
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below chance (corrected p < .05).

when instructed, although top-down guidance was weaker when searching for four
targets. Perhaps participants used a search mode which was not selective for colour
in the latter condition; we speculate about this in the General Discussion.




4.3 Experiments 2a & 2b: Free-choice search

We investigated in Experiments 2a and 2b which mode of search participants actually
opted to use when given free choice on how to search. Given consistent findings
that humans tend to minimize simultaneous VWM load, one may expect that partici-
pants generally prefer sequential search (thereby keeping VWM load low), if those
target templates could be reinspected during trials (in line with e.g., Hoogerbrugge,
Strauch, Nijboer, & Van der Stigchel, 2024; Hoogerbrugge et al.,, 2023; Qing et al., 2024).
Furthermore, what if participants were forced to memorise all target templates?
When all templates are encoded in VWM, participants may opt to search for those
items concurrently, or choose to sequentially prioritize representations in VWM while
leaving other representations in accessory states (Lewis-Peacock et al., 2012; Olivers
et al., 201).

In Experiment 2, participants were able to reinspect templates in half of conditions
(Unlimited), but restricted in the other half of conditions (View-Once). These two con-
ditions allowed us to study whether participants searched differently when templates
remained available in comparison to when VWM must be fully loaded.

4.31 Experiment 2a: Low search difficulty

Sixteen participants (12 female, M,ge =221, SDyge = 1.6) with normal vision and no
colour-blindness performed Experiment 2a, which took approximately 90 minutes to
complete.

Experiment 2a was identical to Experiment 1, except for the following: Participants
were not instructed on which search strategy to use, but could either reinspect
templates as often as they wished throughout the trial (Unlimited conditions), or
only gaze in the template area once per trial (View-Once conditions). In the latter,
they could inspect templates as long as they wanted, but the templates would not
reappear after search onset. Blocked conditions consisted of 50 trials.

4.3.2 Experiment 2b: Increased search difficulty

Sixteen participants (12 female, Mage =221, SDgge = 1.7) with normal vision and no
colour-blindness performed Experiment 2b, of which 12 had also participated in
Experiment 2a. Experiment 2b took approximately 100 minutes to complete.

Experiment 2b was identical to Experiment 2a, expect for one change: Templates
could be shown in varying 90-degree rotations. Again, stimuli in the search array
were only considered targets if their shape, rotation, and colour matched one of the
templates. As such, participants had to remember more features than in Experiment
2a, making the task more difficult. Rotations of templates were randomly applied,
such that not necessarily all templates were rotated differently.
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4.3.3 Results

Target detection order reveals a mix of strategies

Target detection patterns in Experiment 2a provided evidence for a mix of sequen-
tial and concurrent search (Figure 4.3A). Participants searched at least somewhat
sequentially both when templates could be reinspected (Unlimited), as well as when
all templates had to be memorised before search onset (View-Once), but these pat-
terns were less pronounced than the sequential patterns in Experiment 1. Notably,
participants frequently searched in a sequential manner even when all templates
were in memory, suggesting sequential prioritization in memory.

When templates could be reinspected, Relevant colour 1 was often clicked before
Relevant colour 2, as reflected by a significant regression slope, 3 = 360, 95% Cl [140,
.580], p = .003. Participants searched somewhat sequentially even when templates
could not be reinspected; the first relevant colour was detected before the second
colour, B = 331, 95% Cl [187, .475], p < .001. When searching for four items, targets
were also clicked in a structured order — and this was the case for both Unlimited
trials (8 = .076, 95% Cl [.026, 126], p =.005) and View-Once trials (8 = .075, 95% Cl [.025,
126], p = .006). Participants did not detect targets in a significantly different manner
between Unlimited and View-Once conditions in Experiment 2a, as evidenced by
paired samples t-tests (2 templates t (15) = .33, p = 74; 4 templates t (15) = .03, p = .98).

Neither the ability to reinspect, nor increased stimulus complexity, strongly affected
in which order participants clicked on targets — only when searching for four complex
targets did participants detect targets relatively more sequentially. In Experiment 2b
(increased template complexity), regression slopes were descriptively larger than in
Experiment 2a (Figure 4.3C). However, one-tailed paired samples t-tests between the
12 participants who performed both experiments showed that only the slopes in the
4-Unlimited condition were significantly larger in Experiment 2b than in Experiment
2a, t (11) = -3.59, p = .002, d = -1.04 (all other p > .05; the same results hold when
performing independent samples t-tests on all participants of both experiments).
Moreover, slopes in Experiment 2b were similar between 2-template conditions (t
(15) = 1.07, p = .30), but significantly greater in the 4-Unlimited condition than in the
4-View-Once condition (t (15) = 113, p = .007).

Eye movements reveal consistent attentional guidance

Fixation patterns also provided evidence for a mix of both sequential and concurrent
search when participants were not instructed whether to search sequentially or
concurrently. When templates could be reinspected, gaze patterns were not as
pronounced as in fully sequential search in Experiment 1, suggesting some degree
of concurrent search. Vice versa, in conditions in which all templates were encoded
before search onset, participants still exhibited some degree of sequential search.

In Experiment 2a, when searching for two targets, sequential patterns emerged,
while the irrelevant colour was effectively ignored (Figure 4.3B). When searching
for four targets, moderate peaks could be discerned in sequential order in both
the 4-Unlimited and 4-View-Once conditions, but statistically the signal-to-noise
ratio was very limited. The irrelevant colour was effectively ignored in all but the
4-Unlimited condition, indicating that participants were predominantly able to guide
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Figure 4.3: Outcomes of Experiments 2a and 2b. A. & C. Target click order. Bars denote across-participant
averages, error bars denote 4 95% within-participant confidence intervals (Morey, 2008). *** p < .001,
** p <.01, n.s. not significant. B. & D. Fixation patterns. The percentages at each time point sum to 100.
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95% within-participant confidence intervals. Dashes at the top of figures indicate a significantly greater
percentage of fixations on that colour than on the other relevant colours; dashes at the bottom of figures
indicate that the irrelevant colour was fixated significantly below chance (corrected p < .05).

top-down attention even when all items were in VWM. These findings suggest that
participants searched with some degree of sequential prioritization, but often used
another search mode. It is unclear why suppression of the irrelevant colour was
worse in the 4-Unlimited condition than in other conditions, especially because it
was not fully absent; participants still ignored the irrelevant colour in some stages of
trials. We speculate on this in the General Discussion.

In Experiment 2b, stronger sequential patterns emerged in all conditions relative
to Experiment 2a, further evidenced by more statistically significant differences
(Figure 4.3D). Results from eye movements thus resemble those from the target click
order; participants searched more sequentially when templates were complex, and
there were limited differences in how participants searched between Unlimited and
View-Once conditions. Only in the 4-template conditions in Experiment 2b was there a
marked difference between Unlimited and View-Once conditions, where participants
searched more sequentially when templates could be reinspected.
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4.4 What drives concurrent versus sequential search?

Search behaviour in free-choice search showed a mix of search modes, with evidence
for a balance between sequential and concurrent search. However, interpretation
of our findings may be complicated by averaging artefacts; if half of trials were fully
sequential and the other half were either fully concurrent or non-selective, target
detection order would show moderate slopes and guidance patterns would show
at least some bumps, obstructing clear interpretation of how participants searched.
As such, we could not clearly state whether participants switched between strictly
sequential and concurrent search between trials, or whether they used a mixed or
non-selective search mode within trials. Moreover, even though participants were
not instructed to do so, they often encoded and searched templates in our specified
order of relevance (top to bottom). Nonetheless, there could be trials in which
participants searched sequentially but did not follow this order. Those trials would
then reduce the averaged slopes and gaze patterns, giving the impression that search
was concurrent. As such, an analysis method was required which was order-agnostic
and could indicate for individual trials, rather than on a group level, whether search
was sequential or concurrent.

We here introduce a novel analysis method which can dissociate on a trial-by-trial
basis whether search was sequential or concurrent. This method allowed us to inves-
tigate in more detail how often either mode of search was used within participants
and conditions, as well as across participants and experimental manipulations.

We trained Random Forest classifiers on gaze data from Experiment 1, in which
participants were instructed on which search strategy to use (Step 1in Figure 4.4).
These instructions (sequential/concurrent) served as reference labels for our classifier.
Importantly, the colour index labels were shuffled on each iteration and for each
trial independently - thereby ensuring that the classifier learned to detect patterns
instead of specific orders of colour labels. Models validated within Experiment 1
were highly accurate and robust; they classified trials at Mayc = .855 (SD = .025) and
Mapc = .895 (SD = .024) on the 2- and 4-template conditions, respectively (Step 2 in
Figure 4.4 shows the obtained ROC-curves). Having validated that sequential and
concurrent search could be clearly dissociated, we trained a new Random Forest
model on all data from Experiment 1, and used it to predict search strategy in the
data of Experiments 2a and 2b (Step 3 in Figure 4.4). This process was bootstrapped
1000 times. We report how strongly the behaviour in each trial fits with sequential
versus concurrent behaviour, expressed as the percentage of times that the trial was
classified as sequential across all bootstrap iterations. Trials in which behaviour
was more difficult to classify would thus receive a score close to 50%. We used
mixed ANOVAs to discern which factors in our task influenced choice of strategy. For
a detailed description of model implementation and analysis, see Supplementary
Materials section 2.

4.4 Sequential and concurrent are distinct and dissociable 'modes’
of search

Predictions from order-agnostic models showed that sequential and concurrent
search are clearly dissociable strategies based on gaze alone.
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Within conditions, we found that participants used three overarching search 'strate-
gies' (Figure 4.4 shows aggregates across participants; Figure 4.5A shows an example
participant; all individual participants and conditions are reported in Supplemen-
tary Materials section 3). Most commonly, participants were consistent in opting for
one mode of search during the whole condition, evidenced by skewed classification
distributions towards either consistently sequential or concurrent behaviour. Alter-
natively, participants sometimes switched between trials — but within conditions -
from sequential to concurrent search modes or vice versa, evidenced by bimodal
distributions with most trials classified confidently as either sequential or concurrent
behaviour. Least commonly, participants sometimes appeared to employ a hybrid
mode of search within trials, neither fully resembling sequential nor concurrent
search behaviour. These modes of search were typified by Gaussian distributions of
model predictions. Some participants even switched between these three strategy
types across the experiment (Figure 4.5A).

For each participant, per condition, we tested whether model classifications across
trials deviated from normal distributions using Shapiro-Wilk tests. In all conditions
except one, the assumption of normality was violated for 75% to 100% of participants.
Only in the 2-Unlimited condition in Experiment 2b, model predictions followed a
normal distribution for 50% of participants, suggesting that some participants may
have used a hybrid of sequential and concurrent search. In sum, search behaviour
was strongly skewed towards either clearly sequential or clearly concurrent search as
specific modes of search, although on some trials participants may have employed
a mix of the two modes (e.g,, concurrent search for both templates, but with one
template more strongly represented than the other).

4.4.2 Search modes are used dynamically

Outcomes from our models revealed that participants applied sequential and con-
current search modes dynamically, not only within conditions but also between
conditions and across experiments. Across all conditions in both experiments, 511%
(SD = 33.5) of trials were classified as sequential search, and 48.9% as concurrent
search.

Being able to reinspect templates was linked to more sequential search (F(1, 30) =
13.70, p < .001, nﬁ = 31), and this effect was stronger in the more difficult Experiment
2b than in the easier Experiment 2a (F(1, 30) = 5.30, p =.028, 72 = 15). Being able to
reinspect templates also interacted with the number of templates in its effect on
search mode; the higher prevalence of sequential search in Unlimited conditions
compared to View-Once conditions was greater when searching for four templates
than for two templates (F(1, 30) = 73, p = .004, 7 = .25).

In Experiment 2a (Figure 4.4 bottom left), when participants searched for two templates,
trials were equally likely to be classified as sequential and concurrent; 48.6% (SD
= 30.5) of trials were classified as sequential when templates remained available,
and 48.2% (SD = 30.6) when templates could only be viewed once. When participants
searched for four templates, 42.7% (SD = 35.3, p < .001) of trials were classified as
sequential when templates remained available, and 38.8% (SD = 35.4, p < .001) when
templates could only be viewed once.
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Figure 4.4: Methods and results for dissociating search strategy based on gaze. 1. Random Forest classifiers
were trained on 85% of instructed sequential/concurrent trials from Experiment 1, separately for 2- and
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sequences in example trials from 4-Concurrent and 4-Sequential, respectively. 2. Trained classifiers were
validated using the remaining 15% of trials in each iteration. The two subfigures show averaged ROC-AUC
curves from the 100 bootstrap iterations + 95% range. 3. New Random Forest classifiers were trained on
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show example trials). This process was bootstrapped for 1001 iterations, after which classifications were
averaged for each trial. The bottom violin plots show the distribution of data (kernel density estimation),
as well as the median and interquartile range over all trials. *** p < .001 (one-sample t-test against 50%
chance level).

In Experiment 2b (Figure 4.4 bottom right), participants searched more often in a
sequential manner than in Experiment 2a (F(1, 30) =108, p =.003, 2 = .25). Moreover,
participants adjusted their behaviour relatively more when they were able to reinspect
templates in Experiment 2b than in Experiment 2a (F(1, 30) = 5.30, p =.028, 72 = 15).
When participants searched for two templates, there was a higher prevalence of
sequential search when templates could be reinspected (53.4%, SD = 28.9, p < .001).
When templates could only be viewed once, around half of trials were classified
as sequential, meaning that both search modes were used approximately equally
often (51.0%, SD = 30.6). When participants searched for four templates, trials were
significantly more often classified as sequential (4-Unlimited: 70.2%, SD = 311, p <
.007; 4-View-Once: 55.4%, SD = 357, p = .28).

In sum, participants used both sequential and concurrent search modes dependent
on template availability, the number of templates and template complexity.
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4.4.3 Individuals use sequential versus concurrent search idiosyn-
cratically

Using predictions from the models, we were further able to distinguish that partici-
pants employed sequential versus concurrent search to differing degrees. Overall, 12
out of 32 participants were significantly less often classified as sequential compared
to the grand median over all predictions (as indicated by one-sample t-tests, cor-
rected for false discovery rate). Their averages ranged from 14.5% to 46.2%. Conversely,
7 participants were significantly more often classified as sequential compared to the
average (their averages ranged from 66.2% to 80.4%.; Figure 4.5B).

Not only was search behaviour a result of general individual preference, but individu-
als differed in the degree to which they changed search modes as a result of stimulus
complexity. Eight out of 12 participants who participated in both Experiments 2a and
2b searched significantly more sequentially in Experiment 2b than in Experiment 2a
(independent-samples t-tests), whereas 4 participants did not significantly change
how they searched (Figure 4.5C).
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4.5 General Discussion

Investigations into people’s ability to use multiple working memory representations
to concurrently search for targets have led to mixed findings. The results presented
here provide evidence that people can search concurrently for at least two targets
when instructed to do so, and that people use a mix of sequential and concurrent
search when given free choice. We further revealed that sequential and concurrent
can be considered specific and dissociable modes of search. Finally, we showed
that the choice of search mode is flexibly adjusted as a result of task specifics and
individual differences.

In Experiment 1, manual responses and oculomotor behaviour showed that partic-
ipants were able to search concurrently for two targets when instructed to do so,
but that attentional guidance suffered when searching concurrently for four items.
In Experiments 2a and 2b, participants freely chose how they searched. Here, they
exhibited a mix of sequential and concurrent search. A parsimonious model, using
only fixation locations over time, was able to predict with high accuracy and robust-
ness whether individual trials in Experiment 1 contained sequential or concurrent
search. This model was then applied to make predictions of search strategies in
Experiments 2a and 2b. Participants most often used sequential and concurrent
search as specific search modes, although some trials were less dissociable, arguing
for a hybrid mode of search within a limited number of trials. Our model further
revealed that participants were flexible in which search mode they used - dependent
on VWM load, stimulus properties, and template availability.

These findings highlight that whether we can do something does not mean that
we will do it — and conversely, whether we don’t do something does not mean that
we can't. It has been established that humans are conservative in their willingness
to expend more cognitive effort than is minimally necessary, as evidenced by e.g.,
the tendency to avoid simultaneous VWM load when possible (Ballard et al., 1995;
O'Regan, 1992; Van der Stigchel, 2020; Wilson, 2002). However, this willingness can
be modulated by task demands, and differs on an individual level (Draschkow et al,,
2021; Hoogerbrugge et al., 2023; Meyerhoff et al.,, 2021; Qing et al., 2024; Sahakian
et al, 2023; Somai et al,, 2020). It follows that, if maintaining multiple attentional
templates is cognitively effortful, humans might avoid doing so if the task does
not explicitly require them to. In line with this idea, even when participants were
forced to memorise all templates, they exhibited some degree of sequential search.
On those trials, participants must therefore have sequentially prioritized templates
in VWM, possibly leaving the others in accessory states (Olivers et al,, 2011). The
popular explanation for discrepant findings in the multi-target search literature is
that concurrent search is capacity-limited (e.g., Houtkamp & Roelfsema, 2009; Ort
& Olivers, 2020; Ort et al., 2017, 2019; Van Moorselaar et al,, 2014), and we likewise
found that concurrent search for four targets was limited. However, we suggest that
the theory should be extended beyond capacity limitations to include the role of
willingness to search concurrently, which in turn is related to environmental demands
and individual factors.

When participants were instructed to search concurrently for four items, they exhibited
behaviour in which they selectively fixated items of the relevant colours less distinctly
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and ignored the irrelevant colour less strongly. In that condition, participants may
have sometimes used other ways of searching which circumvented our instructions to
search concurrently. In some cases, participants may have switched to a shape-search
mode, of which only one needed to be remembered. Dropping the colour dimension
from memory would still allow participants to find all targets while lowering memory
load, but this would also increase the chance of false alarms if correct shapes -
but incorrect colours — were clicked. Indeed, false alarm rates were highest in the
4-Concurrent condition in Experiment 1 and the 4-View-Once condition in Experiment
2a compared to other conditions (see Supplementary Materials Figure 1). In the
4-View-Once condition in Experiment 2b, participants could still drop the colour
dimension, but even then they had to memorise four shapes. Hit rates in this condition
were also markedly lower, which suggests that participants approached a general
VWM capacity limit, not only a concurrent search limit. Moreover, participants may
have used a memory-search mode, in which they non-selectively shifted attention
across the search array (rather than selecting where to fixate next based on guiding
templates in memory) and searched through all memory items at each fixation.
Shape-search and memory-search may have been used individually, but could also be
combined (drop the colour dimension and perform memory search). Gaze behaviour
can provide support for both non-selective search and shape search (which would
arguably decrease the size of the functional viewing field and thereby decrease
saccade amplitudes and selectivity; Hulleman & Olivers, 2017, Wolfe, 2021, Wu &
Wolfe, 2022). Namely, supplementary analyses showed that saccade amplitudes were
indeed smallest and gaze behaviour was most systematic (i.e,, scanning the array as if
reading a book instead of selecting the best next option) in the 4-Concurrent condition
compared to other conditions (although systematicity was not significantly different
from the other conditions; see Supplementary Materials Figure 4). However, whether
participants used shape-search or non-selective memory-search or both — and if so,
to which degree - is difficult to exactly estimate from the current data. Interestingly,
saccade amplitudes and systematicity showed much less pronounced effects when
participants had free choice on how to search (Experiment 2) than in instructed
search (Experiment 1), which may be another explanation for the observed mix of
sequential and concurrent search modes; participants chose whichever mode allowed
them to retain as much top-down guidance as possible. To avoid the possibility of
participants using search modes that are non-selective for the 'intended’ guidance
dimension (colour in our case), it may be desirable to design multi-target search
tasks in such a way that participants cannot reduce their template representation to
a single dimension, and to keep track of how they move their gaze across the search
array.

Interestingly, because targets occurred at most once per trial, template represen-
tations of found targets may be dropped from memory (Lewis-Peacock et al., 2018;
Oberauer, 2001). This could in turn leave more cognitive overhead to actively guide
search for the remaining items (Olivers et al., 2011). Participants were better able to
ignore irrelevant colours in the second half of trials, providing initial evidence for
this idea (Figure 4.2; 4-Concurrent). Thus, there may be environmental circumstances
in which people use non-selective search, or simplify their search in such a way that
only a single VWM representation is required, if possible. However, they may then
also be able switch back to concurrently guided search as targets are found and
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cognitive load decreases. As such, it would be interesting to study multi-target search
with paradigms in which each target can occur multiple times (e.g., foraging tasks,
cf. A. Kristjansson et al. (2014) and Wolfe (2013); although these may be difficult to
reconcile with the aforementioned dimensionality issue).

We additionally suggest that concurrent search does not need to be equally balanced
across templates. Our results from instructed search likely showed one such instance;
in sequential search for two items, guidance seemed perfectly concurrent, although
one item was often found before the other. Relatedly, participants were generally
able to ignore the irrelevant colour in free-choice search, even with four template
representations in memory. We therefore speculate that templates were not always
equally strongly represented in VWM. Possibly, participants were able to have a
stronger 'blue’ than 'yellow' template (causing more likely detection of the blue
target when attending it; Bays & Husain, 2008), while still allowing a similar amount
of guidance and suppression from each of those templates (Yu et al, 2023; but
see J. R. Williams et al, 2022). These findings highlight the added value of using
multiple modalities (i.e,, manual responses and gaze behaviour) in order to dissociate
distinctive stages of search (Ort & Olivers, 2020) when investigating multi-target
search.

In sum, we here report that sequential and concurrent multi-target visual search are
both possible (although concurrent search has capacity limits), and that they can be
considered two specific modes of search which are applied flexibly. Each of these
modes of search may be considered as 'tools in the toolbox’ of search strategies,
which can be used depending on task demands. In the analogy of furniture assembly;
in some cases one requires a steel hammer, and in other cases one requires a wooden
mallet - both can do similar jobs but both are best suited for slightly different tasks.
We argue that incorporating knowledge about this dynamic application of search
modes may contribute towards a better understanding of multi-target search and be
the key to reconcile inconsistencies in prior findings.
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All data and Supplementary Materials may be retrieved via the Open Science Framework
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Abstract

Saliency models seek to predict fixation locations in (human) gaze behaviour. These are
typically created to generalize across a wide range of visual scenes but validated using only
a few participants. Generalizations across individuals are generally implied. We tested this
implied generalization across people, not images, with gaze data of 1,600 participants. Using
a single, feature-rich image, we found shortcomings in the prediction of fixations across
this diverse sample. Models performed optimally for women and participants aged 18-29.
Furthermore, model predictions differed in performance from earlier to later fixations. Our
findings show that gaze behavior towards low-level visual input varies across participants
and reflects dynamic underlying processes. We conclude that modeling and understanding
gaze behavior will require an approach which incorporates differences in gaze behavior across
participants and fixations; validates generalizability; and has a critical eye to potential biases
in training- and testing data.
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51 Introduction

The world provides us with rich potential visual input. The immense amount of
available information, combined with the unevenly distributed photoreceptor cells
of the retina and the limited processing capacity of the visual system, necessitates
several steps of prioritization. The first, and perhaps most important, of these steps
determines how gaze, and with it visual attention, is allocated across a given scene.
The way the eyes are rotated affects which visual information falls on the eyes’ highly
or lowly resolving parts, and herein lies the foundation of how individuals see and
perceive the world. Which aspects of a scene are most salient - and thus determine
where observers will likely fixate - is therefore of crucial interest (Itti et al., 1998).

In order to computationally model visual saliency, topographic maps of image features
such as local orientation, contrasts, spatial frequencies, or colors are integrated - in
other words features that are of importance in early visual areas within the visual
cortex. Initial applications of these models were seen in computer vision, namely
the prioritization of highly informative locations to deal with limited processing
capacity of computers (Itti et al.,, 1998). It was not long, however, until saliency maps
were translated back to vision: Which locations of a scene, based on image features,
will most likely attract covert and overt shifts of attention and thus be fixated to
optimally use the brain’s processing power (Itti & Koch, 2000). These models can be
understood as spatial distribution maps that highlight salient over non-salient areas.
In turn, such maps can be compared to actual gaze data from benchmarking data
sets (Bylinskii et al., 2015; Kiimmerer, Bylinskii, et al.,, 2022) and improvements can be
made to iteratively adapt models to become ever closer to gaze data, thereby also
improving understanding of how low-level visual input might drive this behavior.

While the initial and seminal models were constructed by considering visual features
that are well known to be represented in the early visual areas of the brain (Itti & Koch,
2000), dozens if not hundreds of models have since been proposed, some following
similar approaches, some semantically enhanced (e.g., Einhduser et al., 2008), and
some based on deep learning approaches instead (e.g., Kimmerer, Bethge, & Wallis,
2022). Researchers in turn benchmark their models on empirical data which usually
contain fixations of a limited number of adult participants (e.g., Coutrot & Guyader,
2014; Judd et al., 2009, 2012) who view a very wide range of static images without
instruction (see Kiimmerer, Bylinskii, et al.,, 2022, for an overview). For instance, the
influential and vast CAT2000 dataset (Borji & Itti, 2015) contains free viewing data of
120 participants (80 women, 40 men) aged 18-27 years with each of 4,000 images being
viewed for 55 by 24 participants. This approach guarantees generalization across
(static) stimuli. Recent calls for more diverse samples in (psychological) research
(Cheon et al, 2020; Jones, 2010; Rad et al., 2018) - beyond the overrepresented
participant pools of most research universities (Cheon et al., 2020) - raise the question
how well such findings may generalize across individuals rather than images. Just
as much as demographic biases in training data might bias models, it may be asked
whether saliency drives eye movements uniformly over time; that is, whether models
are as predictive for the first as for intermediate or later fixations. Both questions
can only be studied with massive samples, as fixation maps of single fixations, such
as all second fixations, are otherwise too scarce to allow for inferences. With the
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Figure 51: Stimulus and overlaid fixation map. Stimulus presented to assess free viewing data (a) and
spatial distribution map of fixation locations overlaid (b) with brighter colors indicating more fixations.
Usable gaze data were obtained from n=2,607 participants using an eye tracker and monitor which were
part of an installation at a science museum (see Supplementary Figure 1 for pictures of the setup). Collage
made from licensed stock images from Shutterstock

emergence of massive online studies, such generalizability issues are increasingly
addressed for other questions in psychology. Large samples, however, remain scarce
in eye tracking research. Whether the field of saliency modeling is also affected by
said sampling biases as one of the key challenges of present-day psychology (Rad
et al, 2018) is therefore still unclear.

Here, we tested the generalizability of model predictions across people and across
fixations, not stimuli, and set out to uncover possible biases in model predictions
with regard to both gender, age, and across fixations. To this end, we evaluated
performance of 21 saliency models, selected upon availability and their huge influence
on the field to infer conclusions on saliency mapping as a general discipline. For
each saliency model, performance was assessed relative to a spatial distribution map
of fixation locations of n=2,607 participants, including children, on a single image
(see Figure 51). As further baselines, we employed (1) a central bias, based on the
assumption that participants fixate the center more than the periphery (Tatler, 2007);
(2) a meaning map (Henderson & Hayes, 2017), constructed of relative meaningfulness
ratings for small patches of the stimulus; and 3) a single observer baseline, the
averaged predictivity of each participant’s fixation locations for fixations of all other
participants. Furthermore, we evaluated model performance across fixations - in other
words how well early, intermediate, and later viewing behavior could be modeled. For
analyses that relate model performance to demographic details of participants, gaze
behavior of n=1,600 participants from 6 to 59 years of age and highest credibility of
logged demographics were used.

5.2 Methods

The study was approved by the Ethics Review Board of the Faculty of Social Sciences
at Utrecht University.

5.21 Participants and data exclusion

Overall, n=2,607 valid free viewing gaze data sets were obtained, using an installation
at the NEMO Science Museum, Amsterdam, which featured a metal box with a screen
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Table 51: Demographics per age bin

Age Gender

Bin Samplesize Mean Men (%) Women (%)

6-11 58 9.97 48.3 517
12-17 149 14.28 64.4 35.6
18-23 249 20.44 55.4 44.6
24729 431 2610 54.5 45.5
30-35 242 3226 50 50
36-41 164  38.60 51.2 48.8
42-47 175  44.36 60.6 39.4
48-53 97 50.08 55.7 443
54-59 34 5594 82.4 17.6

and an eye tracker inside which participants looked into. All analyses not related
to demographics were performed on all 2,607 data sets (/\/IAge =28.79, men =5013%,
women =42.9%; non-binary=6.97%). For analyses relating to demographics, data
sets were only considered if no periods of more than 5s of lost gaze position were
recorded over the duration of the whole procedure (including entering demographics).
For data sets adhering to this requirement, it is highly unlikely that the participants
left the recording between free viewing and entering their demographics. Data sets
were further excluded from any demographic-linked analyses if the default options
(non-binary gender, year 2000 as year of birth) were not changed by the participant,
resulting in n=1,600 participants with demographics of high credibility (Mage =29.82,
men =55.6%, women = 44.4%; see Table 5.1 for detailed demographic information).
N =91 participants indicated non-binary gender across the 6-59 age range, but given
that there was no option for 'prefer not to say’, these data are only given in the
Supplement and have to be interpreted with caution.

5.2.2 Statistics and Reproducibility

All statistical tests reported were two-sided. Tests are detailed alongside results.
Bayesian tests use default JASP priors. The study was not preregistered.

5.2.3 Apparatus, Stimuli, and Procedure

Gaze was logged (asynchronously) at 60 Hz using a Tobii Eye Tracker 4C. This eye
tracker is suited for this research question and setup. In general however, as the
Tobii 4C filters the data for its intended use case (gaze interaction), Tobii advises
against using it for research. A 27" 1920x1080 px monitor with a maximum luminance
of 300 cd/m? was used for stimulus presentation, located at 80cm distance from
the eyes to the screen (50x24 degrees visual angle). A metal box around screen
and tracker shielded the field of view from other visual stimulation. Participants
could either stand, sit on a chair, or stand on a chair to be able to see the monitor
and participate. Other than that, the setup was not height adjustable. Auditory
information was given exclusively after free viewing via two loudspeakers positioned
close to the participants’ ears. See Supplementary Figure 1 for pictures of the setup.
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Participants were required to look at a central circle that gradually filled to start the
experiment and perform a five-point calibration of the eye tracker. Participants were
presented with a full-screen collage image (Figure 51) for 10 s of free viewing without
instruction. The image was constructed so that it would include a wide variety of
objects, both inanimate and animate, both facing or not facing the beholder, as well
as free spaces with low information (i.e, empty sea or sky). Participants could decide
on whether or not to donate their data by fixating a laterally positioned 'yes’ or 'no’
button respectively.

Upon giving consent, participants were prompted to indicate their gender by gazing
at a central (non-binary), left (man), or right (woman) circle. Subsequently, year of
birth could be entered, with 2000 as default option. This year could be iteratively
decreased or increased by gazing at a circle on the left or on the right, respectively.

5.2.4 Data quality and preprocessing

Eye tracking data quality can be assessed by precision, accuracy, and data loss (Dunn
et al,, 2024). While accuracy cannot be assessed with the current setup, precision,
calculated as in Hooge et al. (2018), was Mdn =0.68° (SD=0.28°), loss was M=0.8%
(SD=2.4%). These are reasonable values given the special nature of the setup (see Sl
Data quality for more information and Supplementary Figure 5). Neither precision
nor loss have visibly driven results across demographic groups. Fixation candidates
were detected from raw gaze data with an algorithm specifically built for noisy data
(Hessels et al., 2020). Fixation candidates were discarded if shorter than 60 ms, or
merged if intermittent saccade candidates were smaller than 1 degree of visual angle
in amplitude. This procedure has been demonstrated to prevent event-detection
related biases (Hooge et al.,, 2022). Given that participants needed to look at the
center of the screen to start free-viewing, all fixations with onsets before the start of
free-viewing were removed from the dataset. The following eighteen fixations were
considered for analyses to account for differential fixation counts of participants (this
equated to M=6.906 s of free viewing). Participants with fewer than eighteen fixations
(n=117), thus deviating more than 1.5 median absolute deviation from the median,
were excluded resulting in the total of 2,607 participants (Number of fixations per
participant: Mdn =25.0 MAD = 4.45). Fixations that were located outside of the bounds
of the screen of the experimental setup were excluded.

5.2.5 Baseline spatial distribution maps

To evaluate the performance of the predictions obtained from 21 saliency models
tested here, four different baselines were constructed. 1) A map of all actual fixation
locations served as the upper bound for the performance of any model (comparison
between the binary array of fixation locations and its smoothed counterpart). This
fixation map was constructed from fixation locations by applying a Gaussian filter
(SD=1 degree of visual angle) to the fixation map, effectively making it continuous
(Bylinskii et al.,, 2018; Le Meur & Baccino, 2013) - in other words, discrete fixation
locations were blurred over with this kernel. This approach allows to construct
regions rather than pixels for fixation determination and acts as regularisation for
potential small scale measurement error (Bylinskii et al., 2018). 2) A meaning-map,
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a model created from successive ratings of small patches of the image by n=59
participants served as gold standard model (Henderson & Hayes, 2017), possibly best
incorporating information about objects and semantics, as previously proposed for
computational models (Einhauser et al.,, 2008). To create the meaning map, the image
was split into overlapping patches with diameters of 1.5, 3and 7 degrees of visual angle.
These patches were then rated for meaningfulness by n =59 participants (Mdnage =25
years, SD=7.399 years; men: 39, women: 19, non-binary: 2), recruited via Prolific
without restriction regarding demographics, using Gorilla in an online experiment.
This experiment took about 15 minutes to complete during which participants had to
rate 200 patches each. Participants were each rewarded with 9 euros. 3) A Gaussian
central bias (Tatler, 2007), skewed to the aspect ratio of the screen (SD = screen
half dimensions), served as the baseline performance that should be achieved by
any model. Effectively, the central bias lets saliency be maximal at the center with
declining saliency towards the edges of the screen. Central biases can outperform
saliency maps (Tatler, 2007) and are therefore incorporated in many of the more
recent, here evaluated, models (e.g., Kimmerer, Wallis, & Bethge, 2017; Linardos
et al, 2021). 4) Lastly, a single observer model expressed how well one participant’s
gaze behavior matched gaze behavior of all other participants. This procedure was
repeated over all participants (similar to leave-one-out cross-validation), and scores
from all iterations were then averaged.

5.2.6 Evaluation metric

A multitude of evaluation metrics for saliency maps have been put forward (see
Bylinskii et al,, 2018; Le Meur & Baccino, 2013, for reviews) of which Normalized
Scanpath Saliency (NSS) was used here. NSS correlates highly to other metrics and
has generally favorable properties as it requires minimal prior assumptions (Bylinskii
et al, 2018; Riche, Duvinage, et al,, 2013). NSS was extracted per model by first z-
standardizing the respective saliency map, and overlaying it with the binary map of
discrete fixation locations. For each fixated pixel, the z-score of the corresponding
pixel was taken from the saliency map and a grand mean was calculated over those
values. All maps (baselines or model predictions) were evaluated against the discrete
fixation locations. For the single observer model, discrete fixation locations of one
participant were evaluated against the blurred fixation map of all other participants.
As such, NSS accounts for the relative saliency of regions as predicted by a given
saliency map, not absolute saliencies that differ between models (Bylinskii et al.,
2016, 2018). False positives and false negatives are equally weighed, and (nonbound)
positive NSS scores indicate above chance-level performance, whereas negative NSS
scores indicate worse than chance performance. As NSS is reduced to one score, it
does not indicate which regions drive better or worse than chance performance. For
this reason, graphical representations of the delta between predicted models and
the spatial distribution map of fixation locations are given in Supplementary Figure 6
and Supplementary Figure7.

117




Table 5.2: Performance of visual saliency models and baselines. Model performance (NSS, Normalized
Scanpath Saliency score) for baselines and models are given as rows. Negative numbers denote worse
than chance performance. The Improvement column denotes relative performance between central bias
(0%) and fixation map (100%) in % NSS.

Model NSS  Authors Improvement

Baselines
Fixation map 0.709 100.00%
Central bias 0.014 Tatler (2007) 0.00%
Single observer 0176 23.32%
Meaning map 0.382 Henderson and Hayes (2017) 52.97%

Models
SALICON 0.462 Jiang et al. (2015) 64.45%
SalGAN 0.434 Pan et al. (2017) 60.42%
DeepGazellE 0.411 Linardos et al. (2021) 5715%
DeepGazell 0.408 Kimmerer, Wallis, and Bethge (2017) 56.78%
Qss 0.350 Schauerte and Stiefelhagen (2012) 48.37%
IMSIG 0342 Hou et al. (2011) 47.20%
DeepGazel 0339 Kimmerer et al. (2014) 46.83%
DVA 0.307 Hou and Zhang (2008) 4213%
SSR 0.280 Seo and Milanfar (2009) 38.35%
SAM 0.279 Cornia et al. (2018) 3810%
ICF 0.269  Kimmerer, Wallis, et al. (2017) 36.70%
AIM 0.255 Bruce and Tsotsos (2005) 34.75%
IKN 0.206 Itti et al. (1998) 27.66%
RARE2012 0.200 Riche, Mancas, et al. (2013) 26.79%
BMS 0194 ). Zhang and Sclaroff (2013) 25.88%
CAS 0172 Goferman et al. (2011) 22.71%
GBVS 0171 Harel et al. (2006) 22.65%
SUN 0166 L. Zhang et al. (2008) 21.85%
FES 0.060 Rezazadegan Tavakoli et al. (2011) 6.72%
LDS 0.043 Fang et al. (2016) 4.29%
cvs -0.076 Erdem and Erdem (2013) -12.86%

5.3 Results

5.31 Descriptive model performance

Normalized scanpath saliency (NSS) scores were used to evaluate model performance,
a measure that has generally favorable properties and correlates highly to other
indicators of model performance (Bylinskii et al., 2018; Riche, Duvinage, et al., 2013).
The continuous spatial distribution map of fixations of all participants yielded a
NSS of 0.709 relative to the discrete fixation locations of all participants, effectively
establishing the upper bound for any model's performance. Surprisingly, model per-
formance was higher for many models (e.g,, SALICON, SalGAN DeepGazell) than for the
meaning map (NSS=0.382), which has been described to outperform regular saliency
models (Henderson & Hayes, 2017). The central bias had a prediction very close to
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Figure 5.2: Model performance across demographic bins. Positive and negative values indicate better-
and worse than average performance, respectively. Individual data points represent NSS deviations from
average model performance across age bins. a: Deviations for men and women. b: Deviations across
age bins. Gray dots and lines depict NSS deviations for individual models. ***: statistically significant at
p <0.001, ** at p<0.01, * at p<0.05. ¢: NSS scaled between single observers and fixation maps' NSS per
age bin. Black diamonds represent average deviations alongside 95% confidence intervals. n=1,600.

chance level (NSS=0.014) and was outperformed by all but one of the evaluated
saliency models; the single observer was outperformed by most models. Performance
of individual models is given in Table 5.2 with absolute NSS and percentage deviations
in model performance scaled between central bias and the overall fixation map.

5.3.2 Model performance across individuals

Models performed significantly better at predicting fixation locations of women
(n=710) than of men (n=890; BFyo = 244.904, t(20) = 4779, p < 0.001, Cohen’s d =1.043;
see Figure 5.2, Supplementary Figure 2 for spatial distribution maps of fixation loca-
tions for men and women, and Supplementary Table 3; for results on participants who
reported other gender, see Supplementary Table 4 and Supplementary Figure 4). The
average difference in predictions across gender for all models (NSS =0.017) closely
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Table 5.3: Differences in model performance split by age groups. Deviations (NSS) per age bin from the
average across age bins. Negative numbers indicate worse model performance compared to other age bins,
whereas positive numbers indicate better performance compared to other age bins. Summary statistics
(excluding baselines) are given in the bottom two rows (bold: p <0.05; inferential t-tests in Supplementary
Table2, tests for contrasts between age bins in Table 5.4).

Deviation in model performance relative to average model performance across age bins

Model 6-11 12-177  18-23 24-29  30-35 36-441 42-47 48-53 54-59
Baselines
Fixation map 0186 0.028  0.003 -0103 -0.105 -0105 -0.065 -0.018 0179
Central bias -0.031 0.007 -0.02 0.033 0.014 -0.006 -0.029 0.039 -0.008
Single observer 0.071 0.026 0.034 -0.009 -0.021 -0.037 -0.016  -0.021 -0.029
Meaning map -0.029 -0.024  0.042 0.047 0.015 -0.002 -0.006 -0.006 -0.037
Models

RARE2012 -0.019 -0.035 0.003 0.044  0.015 0.006  0.003 0.034 -0.053
SalGAN -0.007 -0.068  0.069 0.057 0.004 0.006 0.024  0.006 -0.087
DeepGazellE 0.004 0 0.048 0.043 0.009 -0.031 -0.014 0.015 -0.072
SALICON -0.006  -0.012 0.071 0.039 0.003 -0.011  0.008 0.024 -0115
DVA -0.006 -0.061  0.028 0.054 0.019 -0.008 0.02 0.015 -0.06
FES 0.008 -0.029 -0.004 0.04 0021 -0.001 -0.014 0.016 -0.036
QSS 0.037 -0.034  0.035 0.036 0.01 -0.024  0.004  0.009 -0.069
SSR 0.005 -0.046  0.045 0.026  0.031 0.005 -0.006 0.028 -0.089
Cvs 0.02 0.011  -0.015 0.01 0.013 -0.004 -0.023  0.008 -0.024
IMSIG 0.013 -0.035 0.036 0.044 0.03 -0.011  0.006 0.017 -0.096
LDS 0.018 0.021 o] 0.021  0.001 -0.013 -0.03 0.01 -0.031
ICF 0.001 0.024  0.017 0.037 0.007 -0.041  -0.018 0.031 -0.059
GBVS -0.022 0.015 -0.005 0.051  0.001 -0.014  -0.026 0.044 -0.043
CAS 0.023 0.0177  0.004 0.026 0.007 -0.019 -0.02 0.033 -0.068
SUN 0.018 -0.018 -0.004 0.018  0.011 -0.024 -0.018 0.041 -0.021
DeepGazel 0.003 -0.008  0.044 0.046 0.009  -0.025 -0.008 0.027 -0.087
AIM 0.024  0.005 0.01 0.017 0  -0.049 -0.022 0.038 -0.025
SAM -0.001 0.082  0.033 0.015 -0.04 -0.03 -0.019 0.033 -0.073
DeepGazell -0.009 -0.041  0.038 0.064 0.014  -0.012 0.001 0.0M -0.065
IKN -0.014  -0.024  0.006 0.059 0.014 -0.008 -0.017 0.035 -0.053
BMS 0.041  0.007  0.027 0.026 0.017 -0.016 -0.02 0.019 -0.101
Summary statistics (models only)

Mean deviation -0.006 -0.011 0.023 0.037 0.009 -0.015 -0.009 0.024 -0.063

Bayes Factorqo 0.739 0.567 92727 >5,000 6.982 258279 4.050 >5,000 >5,000

corresponded to the difference for the central bias (NSS=0.018, Supplementary
Table 3).

Further differences in model performance were found across age groups. Data were
binned in nine groups, each spanning 6 years of age from 6-59, which ensured at least
34 participants per bin (see Table 5.1 for demographics per bin). Model performance
was then averaged across age bin averages to account for class imbalances in the
grand average, and this was used as baseline for across-age comparisons. Therefore
this average, unlike the values reported in Table 5.2, is not biased towards the groups
with most participants. Age biases across models were fairly consistent (Figure 5.2;
Table 5.3, see Table 5.4 for t-tests and respective effect sizes between bins). One
age group revealed the clearest positive deviation from average model performance:
Those of the arguably most oversampled population, corresponding to most college
students and young academics, respectively (18-29). This was accompanied by gener-
ally less consistent or worse predictions for other age bins. Note that, due to smaller
group sizes, the age bins 6-11 and 54-59 warrant more caution before interpretation
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Table 5.4: Contrasts for percentage explained NSS of the explainable NSS between all age bins. Contrasts
are for data as given in Figure 5.2c and Table 5.3 across age bins. Data distribution was assumed to be
normal but this was not formally tested for these contrasts.

Comparison  Mean Difference t p(Bonferroni) 95% CI (Lower) 95% Cl (Upper)
6-11  12-17 -3.889  -2.548 0.424 -8.854 1.077
18-23 -8191  -5.367 <.001 13157 -3.225

24-29 -19.075  -12.499 <.001 24,041 -14110

30-35 -16.039 -10.509 <.001 -21.004 -11.073

36-41 “14151 -9.272 <.001 -19117 -9185

42147 -11.345 -7.434 <.001 -16.311 -6.379

48-53 -16.375 -10.730 <.001 21341 “11.409

54-59 -3.811 -2.497 0.487 -8.777 1154

12-17  18-23 -4302 -2.819 0195 -9.268 0.663
24-29 -15187  -9.951 <.001 -20153 -10.221

30-35 -12150  -7.961 <.001 17116 7184

36-41 -10262  -6724 <.001 -15.228 -5.296

4247 7457  -4.886 <.001 -12.423 -2.491

48-53 -12.487  -8182 <.001 -17.452 -7.521

54-59 0.077 0.051 1 -4.889 5.043

18-23  24-29 -10.885 7432 <.001 -15.850 -5.919
30-35 7848  -5142 <.001 -12.813 -2.882

36-41 -5960  -3.905 0.005 -10.926 -0.994

42-447 3154 -2.067 1 -8120 1.811

48-53 -8184  -5.363 <.001 -13150 -3.218

54-59 4.379 2.870 0.168 -0.586 9.345

24-29  30-35 3.037 1.990 1 -1.929 8.003
36-41 4.925 3.227 0.055 -0.041 9.891

4247 7730  5.065 <.001 2764 12.696

48-53 2700 1769 1 -2.265 7.666

54-59 15264  10.002 <.001 10.298 20.230

30-35  36-41 1.888 1237 1 -3.078 6.854
42-47 4.693 3.075 0.089 -0.273 9.659

48-53 -0.337 -0.221 1 -5.302 4.629

54-59 12.227 8.012 <.001 7.261 17193

36-41  42-47 2.805 1.838 1 -2160 797
48-53 2224 -1.458 1 7190 2741

54-59 10.339 6.775 <.001 5.373 15.305

42-47  48-53 -5.030 -3.296 0.044 -9.996 -0.064
54-59 7.534 4.937 <.001 2.568 12.500

48-53 54759 12.564 8.233 <.001 7.598 17.529

than the other age bins. Notably, variation in model performance was relatively large
for under-aged (< 18 year-old) participants compared to other participants. Again, the
central bias showed a largely similar tendency to the overall model biases, in line with
findings reported earlier on a smaller selection of models and age groups (Acik et al,,
2010; Krishna & Aizawa, 2017). Spatial distribution maps of fixation locations are given
per age bin in Supplementary Figure 2; absolute NSS per model and baselines are
given in Supplementary Table 1. Individual predicted maps per model (Supplementary
Figure 6), and deviations between models’ predictions and actual fixation locations
(Supplementary Figure7) are given in the supplementary information. The degree
of biases across age became even more apparent with NSS scaled between single
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Figure 5.3: Model performances across fixations. a: Model (colors) and baseline (dashed/hatched/dotted)
benchmarking across fixations with unscaled NSS. b: Model benchmarking across fixations with NSS scaled
to maximally achievable NSS per fixation. Fixation maps are cumulative, i.e, righter points on the x-axis
indicate model performance including all previous fixation data. The rightmost data corresponds to the
benchmarking reported in Table 5.2. ¢: Same visualization as in b, but per fixation instead of cumulative
fixations. d: Fixation map for only the 1st fixation shows a much more focal distribution of fixations than
for the oth fixation, which much more closely resembles the map after all 18 fixations (Figure 51 right).
n=2,607.

observers and fixation maps' NSS per age bin (Figure 5.2 ¢). Differences were striking
here, again with best performances for participants in young adulthood (Figure 5.2).
Differences as a function of age were substantial (F(1.699,33.971) = 38.269, p <0.001,
n?=0.657) and were highly significant between most age bins. For instance, perfor-
mance for children aged 6-11 differed from performance of all adults (all p<0.001)
except those in the oldest bin (see Table 5.4 for full post-hoc t-tests).

5.3.3 Model performance across fixations

Model performance was characterized by substantial variation in NSS, but revealed
that fixations are predicted differently well over time. Here, the fixation map, reflecting
an upper bound, showed much higher NSS scores early than later on, likely because
fixations were much more focal for early viewing (see Figure 5.3 d). Models predicted
the subset of early fixations generally better than when consecutive fixations were
added, but only in absolute NSS scores (Figure 5.3 a; e.g., first vs. ninth fixation
t(20) =15.881, p < 0.001, 95% Cl =[0.692, 1.857]). When scaled to the maximum achievable
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NSS, many models improved relative to this maximum as consecutive fixations were
added, given that the NSS scores of the fixation map and central bias also decreased
(Figure 5.3 b, first vs. ninth fixation t(20) =-6.634, p < 0.001, 95% Cl =[-2.057, -0.821]).
Relative performances across models differed as a function of the cumulative fixations
made - e.g., SAM (Cornia et al,, 2018) performed very well on the first two fixations in
comparison to the overall benchmark, which was best predicted by current, leading
deep learning models such as SALICON, SalGAN, and DeepGazellE (Jiang et al., 2015;
Linardos et al.,, 2021; Pan et al., 2017). This variability showed in different model rank
orders between the first few fixations, relatively later fixations, or all 18 fixations,
respectively (corresponding to the leftmost and the rightmost rank order in Figure 5.3
b). Of course, a map of cumulative fixations contains more information whereas a
map for only the first fixation is arguably more sparse - despite already 2,607 fixations
contributing to it. Are differences in performance across fixations therefore driven
by data sparsity? Fixation maps for only the first and the ninth fixation, respectively,
(Figure 5.3 d) compared with the overall map of all fixations (Figure 5.1), showed
markedly different patterns as function of early- versus late viewing behavior: Fixation
maps were highly focal for the first and much more spread out for later fixations,
data sparsity cannot have driven these effects. The benchmark of models per fixation
(Figure 5.3 ¢) further showed relatively worse performance for early fixations (first
vs. ninth fixation t(20) = -4.679, p <0.001, 95% Cl =[-1.544, -0.482]). Around six to ten
fixations marked the point of best performance, which roughly matches the overall
number of fixation clusters observed. NSS scaled between central bias and fixation
map then dropped again across models. This challenges the current approach of
optimizing saliency models on just one fixation map per image - in fact, what attracts
gaze early on might be substantially different from what attracts gaze after a few
fixations or extended viewing.

5.4 Discussion

Here we set out to investigate how well saliency maps, models that have been
proposed to predict the deployment of visual attention, and by extension fixation
locations, generalize across individuals and the number of fixations. Using a sample
of 2,607 participants and 21 highly influential saliency models, gender and age biases
in model performance were found for the subset of 1,600 participants with credible
demographics. Specifically, predictions were better for women and adults aged 18 to
29. These demographics (women, 18-29), perhaps incidentally, best represent those
of the majority of participants in psychological research in general (predominantly
younger adult women), as well as in the vast majority of benchmarking data (Borji &
Itti, 2015; Kimmerer, Bylinskii, et al., 2022). Overall, a large portion of the biases in
predictions across demographic groups followed relative differences in prediction of
the central bias baseline, in line with previous work with smaller samples and more
distinct age groups (Acik et al., 2010; Krishna & Aizawa, 2017; Krishna et al., 2018; Rider
et al, 2018).

Besides demographic-based differences, model performance differed as a function of
which fixation was to be predicted. Here, models only performed well for early fixa-
tions in absolute NSS, but actually worse when scaled with the maximum achievable
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NSS. Our sample allowed to study how model performance evolves as a function of
the number of fixations, as maps are not sparse; even if only the first or ninth fixation
is used as a basis, it contains information from 2,607 fixations. Worse predictions
for early and later fixations compared to intermediate (i.e., sixth to tenth) fixations
highlight the importance of more closely defining whether earlier or later viewing
behaviour is modeled. One possibility to account for the variability in prediction
quality across fixations lies in adjusting how saliency models apply thresholds: For
first fixations, only the few most focal locations could be emphasized by greedier
thresholds to represent the focal distribution of fixation locations observed early on.
For subsequent fixations, a more liberal approach might be employed, allowing more
spread-out predictions - as observed for intermediate or later fixations. The here
reported data further suggest that different models might capture different visuo-
attentional processes - with some models being more predictive of early fixations
(e.g., Cornia et al, 2018) and others being better at predicting later fixations (e.g.,
Jiang et al,, 2015; Linardos et al., 2021). If the goal is to define which part of a scene is
fixated first, particular models may perform best and thus be the method of choice.
If the goal is to predict which parts of a scene will be fixated eventually, however,
different models that weigh objects and semantic information more strongly are to be
recommended. This view could resolve a number of outstanding debates on whether
low-level features or semantics drive gaze behavior most strongly (Borji et al., 2013;
Cerf et al,, 2009; Einhauser et al,, 2008; Henderson & Hayes, 2017; Henderson et al,
2021; Pedziwiatr et al,, 2021). We speculate that both accounts have their merit: The
answer could depend on the viewing duration and the number of objects in a scene.
Remarkably, fixation maps were very focal for the first few fixations. As soon as the
number of fixations approached the number of bigger objects in our scene, model
performance did not notably change further when using a cumulative fixation map,
indicating that participants eventually fixated most objects, but in differing sequences.
Very late fixations, in turn, could disperse even further and be captured worse as
a consequence. Saliency models are optimized using cumulative fixation maps ob-
tained from several seconds of free viewing. This practice might have introduced bias,
as later fixations are disproportionately weighed in these maps relative to the initial
two or three fixations. The findings and account put forward here could (partially)
explain differences across benchmarking datasets and results (Kiimmerer, Bylinskii,
et al,, 2022). A straightforward prediction would be that benchmarks which use gaze
data on images with a short viewing duration favor models that prominently weigh
relevant low-level features (possibly such that are common in faces; Cerf et al.,, 2009;
Einhauser et al., 2008), whilst benchmarks with gaze data obtained from viewing
behavior over a longer time favor models that weigh semantic content more strongly.

Taken together, the here reported findings put the current approach of evaluating and
improving models into question, which is predominantly to design and benchmark
models around fixation maps constructed from several seconds of free viewing by col-
lege student participants. More generally, the present findings reveal that models of
psychological processes - even as fundamental as low-level visual behavior - can be
affected by systematic and substantial biases introduced via training and benchmark-
ing datasets. Proper modeling and understanding of human spatial gaze behavior will
require an approach that incorporates diverse samples, if the aim of said models is
to predict behavior of more than just college students. Furthermore, saliency models
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could improve further by addressing effects of early versus later fixations, or this
issue should be explicitly addressed in limitations of models. Different models might
be used to account for these differences or models could incorporate adjustable
options: For whom and for when should fixations be predicted? Knowledge about
developmental differences in sampling behavior and saliency computations (Acik
et al., 2010; Franchak et al., 2016; Gottlob & Madden, 1999; Mitchell & Neville, 2004;
Rider et al,, 2018) could be incorporated here, as well as findings into differences in
fixations across viewing duration (e.g., Ossandon et al., 2014; Pannasch et al., 2008).

Most models outperformed the central bias, in line with several benchmarking results
(Kimmerer, Bylinskii, et al,, 2022). However, many models already incorporate a
central bias and the image at hand features many spread-out objects. Generally, more
recent models performed best at predicting the overall fixation map (i.e, including
data of all participants and fixations), some of which are currently also leading in
benchmarks across stimuli (e.g., Linardos et al., 2021). Indeed, deep learning-based
models (Jiang et al., 2015; Kiimmerer, Wallis, & Bethge, 2017; Linardos et al., 2021; Pan
et al,, 2017) generally outperformed more traditional and interpretable models which
are foremost centered around low-level image feature computations. However, these
deep-learning models still suffered from qualitatively similar limitations regarding
generalizability across individuals and fixations. Furthermore, the meaning map was
outperformed by several models, in contrast to initial findings (Henderson & Hayes,
2017), reminiscent of recent criticism (Pedziwiatr et al., 2021), but see Henderson
et al. (2021). Meaning maps could possibly be advanced further by ensuring high
correspondence between the demographics of raters and participants whose fixations
are to be predicted.

5.41 Limitations

Naturally, the sample put forward here, while vast, is in turn affected by sampling
biases. For example, children need to be willing to wait and focus, older adults need
to have sufficient vision to participate. Which further differences between people,
beyond gender and age, are relevant when it comes to saliency maps remains to be
determined. With this first step, we hope to stimulate research into this, including into
non-western populations in the field of saliency mapping, as suggested in many areas
of psychology (Henrich et al, 2010; Jones, 2010; Rad et al., 2018). As a way forward,
to overcome the biases uncovered here, we provide the present database to help
improve across-participant and across-fixation generalizations and will supply it with
additional data as long as the exhibition remains active. Replications of presently
reported findings across multiple images would be desirable, for instance using other
large scale data collections such as described here. Other limitations to be kept in
mind lie in the less controlled setup than used in most common benchmarking data
sets, or limited possible inferences on gaze behavior of participants with non-binary
gender. The practical implications here are simple: no gender should be made the
default option and 'prefer not to say’ options should be given to not obscure findings.
Whilst we did not find qualitative differences in findings for two different smoothing
kernel sizes to create the fixation maps, more extreme choices for kernels or flexible
central biases might affect the here reported bounds and thus findings.
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5.4.2 Conclusions

Past findings (e.g,, on the central bias outperforming many models; Tatler, 2007) could
have been taken to cast doubt on the general usefulness of saliency modeling. Such
criticisms, however, have led to even increased efforts to develop more powerful
models, e.g., by incorporating the central bias. The here identified systematic chal-
lenges to saliency modeling - generalizability across individuals and which fixation is
to be predicted - might require new approaches in turn, for instance by incorporating
information besides low-level image features (see also De Haas et al., 2019, for related
calls) in order to make the next leap forward happen. If models can only generalize
to overall fixation maps across images (Kimmerer, Bylinskii, et al., 2022), but fail
at generalizing across earliest fixations or work best only for certain demographic
samples, different models might be needed to predict different (groups of) individuals
and visuo-attentional processes. Or, even better, models might incorporate which
fixations are to be predicted - distinctions for the demographics and the number of
the fixation could hereby set the path for much more powerful models. We argue that
visual saliency should be considered a dynamic, interactive, and integrative result of
low-level image features (e.g, Itti et al., 1998), as well as semantic information (e.g,
De Haas et al,, 2019; Einhduser et al.,, 2008) or meaning maps (Henderson & Hayes,
2017) under the consideration of the individual differences that have been associated
with gaze behavior (e.g,, Franchak et al., 2016; Mitchell & Neville, 2004).
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All code and data are available via the Open Science Framework
https://osfio/skafr/.
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Abstract

Fluctuations in a person’s arousal accompany mental states such as drowsiness, mental effort,
or motivation, and have a profound effect on task performance. Here, we investigated the
link between two central instances affected by arousal levels, heart rate and eye movements.
In contrast to heart rate, eye movements can be inferred remotely and unobtrusively, and
there is evidence that oculomotor metrics (i.e., fixations and saccades) are indicators for
aspects of arousal going hand in hand with changes in mental effort, motivation, or task type.
Gaze data and heart rate of 14 participants during film viewing were used in Random Forest
models, the results of which show that blink rate and duration, and the movement aspect
of oculomotor metrics (i.e,, velocities and amplitudes) link to heart rate-more so than the
amount or duration of fixations and saccades. We discuss that eye movements are not only
linked to heart rate, but they may both be similarly influenced by the common underlying
arousal system. These findings provide new pathways for the remote measurement of arousal,
and its link to psychophysiological features.
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64 Introduction

Remotely and unobtrusively detecting fluctuations in arousal is of wide interest to re-
searchers in fields such as human-computer interaction, psychology, and ergonomics.
This interest is due to the fact that changes in arousal are not only related to physical
exertion, but also to psychological concepts for which arousal is often assessed as an
objective approximation, such as the degree of excitedness, drowsiness, or mental
effort during a given task. Given that arousal levels are related to task performance
following an inverted U-shape function (Teigen, 1994; Yerkes & Dodson, 1908), they
have a profound effect on task performance — for instance on various critical tasks,
arousal may affect the safety of operators and other people who rely on those op-
erators (Williamson et al., 2011). Although fluctuations in arousal can be detected
from various objective sources such as electroencephalography (EEG), functional
Magnetic Resonance Imaging (fMRI), heart rate, or skin conductance (Hart & Staveland,
1988), these methods require direct physical interaction with measurement devices
or can be quite obtrusive. Only few parameters can be assessed remotely, such as
oculomotor metrics obtained via video-based eye-tracking.

In the current study we investigate how well heart rate — one of the best investigated
central indicators of arousal — can be predicted from remotely accessible oculomotor
metrics as alternative peripheral indicators of arousal. A link between these indicators
is plausible given the extensive support for correlations between oculomotor metrics
and various psychological concepts, such as mental effort. For instance, it has
been shown that the degree of pupil dilation can provide an accurate indication of
participants’ mental effort in both controlled and naturalistic viewing tasks (Beatty,
1982; Palinko et al,, 2010). Furthermore, it has been shown that the peak velocity
of saccades decreases as mental effort increases (Di Stasi et al.,, 2010, 2013) and
increases as motivation increases (Muhammed et al., 2020). Similarly, mental effort
has been shown to covary with heart rate and with several derivatives of heart rate
measures (Charles & Nixon, 2019). Additionally, it has been shown that changes in
arousal are paired with an altered rate of eyeblinks (Maffei & Angrilli, 2019; Wood &
Hassett, 1983), and that spontaneous eyeblinks occur in tandem with an increase in
heart rate variability (Nakano & Kuriyama, 2017).

While oculomotor measures are fairly robust, they can be influenced by the environ-
mental circumstances under which they were obtained. For instance, pupil dilation is
impacted by the luminance of the scene that is being watched, and microsaccades
and peak velocities of saccades can only be reliably measured by expensive high-
speed, low-noise trackers. Additionally, among eye tracking scientists there is no
unified concept of how fixations and saccades should be defined - and thus the
application of differing fixation- and saccade detection techniques may result in
differing outcomes, even if they are applied to the same dataset (Hessels et al., 2018).
As such, incorporating several metrics which can be independently extracted (e.g,,
pupil size, oculomotor movement, blinks) would improve robustness of the model, as
it reduces dependence on one single extraction technique. This also applies to cases
in which pupil dilation measurements are unreliable or missing, or the eye tracker’s
sampling rate is too low to extract peak saccade velocities.

The benefits of relating oculomotor metrics to heart rate are two-fold. Firstly, scruti-
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nizing the links between oculomotor metrics and heart rate can foster our theoretical
understanding of common underlying mechanisms and thereby our definition of
arousal. Secondly, ever since the seminal works of Buswell (1935) and Yarbus (1967),
we have been aware that eye movements are foremost driven by task type (top-down)
and visual saliency (bottom-up). Later on, it has been shown more reliably that task
type - such as search or free-viewing - influences gaze behaviour (Henderson &
Hollingworth, 1998; Le-Hoa V6 & Wolfe, 2015; Mills et al., 2011), and that oculomo-
tor metrics besides pupil dilation (Strauch et al.,, 2021) and peak saccade velocity
(e.g., saccade amplitude, fixation duration) can provide sufficient information for
machine learning algorithms to predict task type at above chance level (Hanke et al,,
2016; Kootstra et al,, 2020). In this manuscript, we describe that, besides top-down
and bottom-up mechanisms, arousal — estimated by the link to heart rate - also
contributes to eye movements.

To this end, we use data from the studyforrest dataset (Hanke et al,, 2016). This dataset
contains eye tracking and pulse oximetry measurements from participants while they
watched the 1994 motion picture Forrest Gump. We investigate whether oculomotor
metrics can provide sufficient information for regression models and machine learning
models to accurately predict high or low heart rates of participants in this naturalistic
viewing task. Furthermore, we investigate how strongly each oculomotor feature
contributes to the correct prediction of heart rate, thereby providing insight into how
specific aspects of oculomotor movement is driven by a common measurement of
arousal, such as heart rate.

6.2 Methods

All analyses were performed with Python 3.8:10, using SciPy version 1.6.2 (Virtanen
et al,, 2020) and scikit-learn version 0.24.2 (Pedregosa et al., 2011). All code and
outcomes can be retrieved from https://osf.io/skcd8/.

6.21 Raw data

Eye tracking data and pulse oximetry data were obtained from the studyforrest
dataset, which contains data of fourteen participants that were measured while being
presented with the 2-hour film Forrest Gump (Hanke et al., 2014, 2016). The raw eye
tracking data was measured with an Eyelink 1000 at a frequency of 1 kHz and pulse
oximetry measurement was applied to record heart rate data at an effective frequency
of 100 Hz. A full description of the recordings and anomalies can be found in (Hanke
et al,, 2016) and at https://studyforrest.org.

6.2.2 Oculomotor feature detection

Fixations and saccades were extracted based on the algorithm proposed in Hessels
et al. (2020), which operationalizes fixations and saccades as phases of slow and fast
eye movements, respectively. Firstly, the raw 1 kHz x and y gaze signals were smoothed
by applying a Savitzky-Golay filter. We then applied an adaptive velocity threshold
algorithm to this smoothed signal, thereby obtaining candidate fixation phases,
with everything in between being candidate saccade phases. Thereafter, we applied
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two basic merging criteria. Firstly, saccade candidates with amplitude < 1.0° were
removed, thereby merging neighbouring fixation candidates. Subsequently, all fixation
candidates with duration < 6oms were removed. This procedure successfully removes
large differences in oculomotor event classification between different algorithms
(Hooge et al, 2022). Gaze amplitudes and velocities in pixels were converted to
degrees of visual angle by multiplying their values by 0.0186 (Hanke et al., 2016).
Lastly, blinks were detected by finding periods in which no pupil data was measured.
All events which lasted less than 3o0ms, or more than 3 seconds, were removed. These
thresholds were set so that neither brief nor longer periods of data loss would be
incorrectly detected as blinks.

6.2.3 Data pre-processing

After extraction of oculomotor metrics, data of each participant was split into 240
chunks of 30 seconds each. However, the last chunk was often shorter than 30
seconds, and some chunks had too much data loss. As such, these chunks were
discarded, resulting in 3327 data points. Then, heart rate detection was performed
over the raw pulse oximetry signal within these chunks, using HeartPy (Van Gent
et al, 2018). Thirty seconds were selected as chunk size because it provides a balance
between sufficient data per chunk (> 20 fixations on average, and sufficient time
for accurate heart rate detection), and a sufficient number of chunks for machine
learning purposes.

For each chunk, twelve features were extracted: (1, 2, 3) the duration of each fixation,
saccade, and blink event; (4, 5) the amplitude of each fixation and saccade event; (6,
7) the peak velocity of each fixation and saccade event; (8, 9) the mean velocity of
each fixation and saccade event; and (10, 11, 12) the count of fixation, saccade, and
blink events in that chunk.

We took a two-fold approach to testing whether oculomotor metrics can be sufficient
predictors of heart rate. Firstly, we posed that the prediction of heart rate could
be considered a regression problem, in which we aimed to predict heart rate on a
continuous scale. Secondly, we posed that the prediction of heart rate could also be
considered a binary classification problem (above some threshold or below some
threshold). This approach can be useful when the aim is to only predict whether
someone is either excessively or insufficiently aroused.

To prepare our dependent variable for binary classification, the heart rate of each
chunk was expressed as a z-score; the number of standard deviations from the
median heart rate of that respective participant over the full film. Each z-score was
then converted to a binary variable - namely low if z < -5, and high if z > 5. All other
chunks were considered neutral and discarded. Since the distributions of heart rate
were often skewed, and due to slightly differing amounts of data loss, our binarization
did not result in equally large samples of high and low labels. As a result, 513 chunks
were below the threshold, and 607 chunks were above the threshold. A total of
1120 data points remained after binarizing the heart rate data. Distributions of each
feature, split per label, are reported in Figure 6.1.
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Figure 6.: Distributions (kernel density estimation) for each of the twelve features, per label (high or low
heart rate). The distributions are computed over all chunks for all participants, thus 1120 data points per
feature (513 low, 607 high). Orange and blue values indicate median and standard deviation of each of the
high and low heart rate distributions, respectively.

6.2.4 Feature pre-processing

As is common in machine learning pipelines, our classifier required an equally long
set of features per chunk of data, and the described feature set did not comply with
this requirement. For example, if 30 saccades were made within one chunk, and 40
saccades were made in another chunk, the peak saccade velocity variable would
contain 30 and 40 values for each of those chunks, respectively. Therefore, our data
needed to be aggregated. Three methods were explored, as outlined in the next
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subsections.

Averaging

Within each chunk, the average of each of the twelve features was computed, providing
one value per feature for each chunk. This approach provides the most intuitive
insight into the amount of information contained within each feature, which in turn
contributes towards correct classification.

Feature explosion

It could be argued that simply calculating the mean value over features would discard
relevant information, since, for instance, the mean saccade velocity across chunks may
be equal, but the variance across chunks could be different. Similar to the approach of
Kootstra et al. (2020), a set of 13 statistical descriptors (e.g., mean, variance, uniformity)
was employed to describe the distribution of each of the features 1-9 within each
chunk (see S1 Table for a full list of the statistical descriptors). Through this method,
the dataset was thus ‘exploded’ and contained 3 count features + (9 features x 13
descriptors) = 119 features.

Feature explosion and dimensionality reduction

To aid interpretation of these 119 features, each of the oculomotor metrics was to be
described in at most two variables. To this end, each of the nine exploded features
was reduced from a description of dimensionality 13 to a description of dimensionality
2 by taking the two components with the highest explained variance from Principal
Component Analysis (PCA). This resulted in a set of 3 count features + (9 features x
2 descriptors) = 21 features. On average, the first two components taken from PCA
provided an explained variance of 98.98% for the nine features.

6.2.5 Regression pipeline

We fitted a multiple linear regression with heart rate per chunk as the dependent
variable, and either of the features obtained by the methods outlined above as
independent variables. In addition, a similar but polynomial regression was fitted, to
identify possible non-linear links. All regression models were fit to the train set and
R? was evaluated on the test set.

6.2.6 Machine learning pipeline

Logistic Regression, K-Nearest Neighbours and Random Forest Classifier were used to
predict high versus low heart rate from oculomotor metrics. Each type of model was
run independently 50 times, with a new 80/20% stratified train/test split for each
run, and with the default set of parameters as provided by scikit-learn. On average
over those 50 runs, and across the three different pre-processing approaches, the
Random Forest classifier performed best of the three models, and thus this model
was selected for further optimization (see Table 6.2).

Subsequently, hyperparameter optimization of the Random Forest classifier was
implemented over the number of trees (range 10-200; step size 1) and the maximum
depth per tree (range 1-30 + unlimited depth). All other hyperparameters were kept
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Table 6.: Outcomes (R?) of the linear regression models, per pre-processing approach. Features were
either derived directly from the pre-processing approach, or with added second-degree polynomials for
each feature. Models were fit to the 80% train set and evaluated on the 20% test set.

| > R® (with 2™ degree polynomials)

Averaging 18 30
Explosion 21 <. 01
Explosion + reduction | 17 12

Table 6.2: AUCs of the model pre-selection process (averaged over 50 independent model runs). 2The
average (SD) outcome on the test set over 50 runs of the optimized model is reported.

| Log. Reg. K-NN Rand. Forest | Rand. Forest + optim.?

Averaging 622 617 696 698 (.04)
Explosion 590 588 660 664 (.05)
Explosion + reduction 614 585 666 678 (.04)

as default. We then constructed 500 candidate combinations of hyperparameters by
randomly sampling from their specified distributions. Each candidate combination
was assigned the same 80% training set and was evaluated on that set using 5-fold
stratified cross-validation and Area Under the Curve (AUC) as performance metric. An
AUC of 0.50 constitutes classification at chance level and 1.0 constitutes complete
accuracy. The model and parameter combination that led to the best cross-validation
result was then tested on the 20% holdout set. To compensate for randomness effects
in the sampling of the training- and test sets, and in the sampling of hyperparameters,
this search process was repeated 50 times and means and standard deviations are
reported.

Finally, the contributions of all features towards correct classification were extracted
from the best-performing model using permutation importance (Altmann et al., 2010).
For each feature, a one-sample t-test was performed to test whether that feature’s
importance differed significantly from the overall mean (higher importance is better;
t-test a = .05).

6.3 Results

6.31 Regression

R? for regression models ranged between < .01 and .30 (see Table 61 for full results),
indicating that oculomotor metrics provide limited information towards prediction of
heart rate as a continuous variable.

6.3.2 Classification

Overall, the averaging pre-processing approach provided the best performance at
classifying whether a participant had a high- versus low heart rate within a chunk
(AUC = .696). The model pre-selection results and the results of optimization are
reported in Table 6.2.

The best-performing model performed consistently above chance and achieved an
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Table 6.3: AUCs and parameters of the best-performing models and runner-up models resulting from
hyperparameter search (on the averaging pre-processing approach). Model ranks were defined based on
cross-validated classification performance. All values are averages over 50 runs. In each run, only the
best model was tested against the test set. @Includes at least one model where the maximum depth was
unlimited

\ Model rank 1 Model rank2 Model rank 3
Cross-validation performance (AUC) 703 701 700
20% holdout set performance (AUC) 698 - -
Average number of trees 126.5 135.0 127.2
Average maximum depth per tree 20.2° 19.32 19.5°
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Figure 6.2: Mean (+ 95% Cl) feature importances as extracted from the best-performing model of each of the
50 runs. Higher values imply a higher degree of information within the variable. The vertical dashed line
represents the overall mean of all importance values. The asterisks represent where feature importances
differed significantly from the overall mean.

average AUC of 703 (SD = .02) on the cross-validation sets, and an average AUC of
698 (SD = .04) on the test sets over 50 independent runs. An overview of the best
models and the runner-up models is reported in Table 6.3.

The extraction of feature importances revealed blink rate, duration, and features
associated with oculomotor movement to be most predictive of heart rate ([fixation
and saccadic] median velocity, saccadic peak velocity; Figure 6.2). All other features
were found to contribute worse-than-average towards classification.

6.4, Discussion

In the current study, we investigated how well oculomotor metrics may predict heart
rate and which of these features drive this prediction predominantly. To this end,
we used a public dataset of participants whose physiological data were obtained
while watching the 1994 Forrest Gump motion picture. Although oculomotor metrics
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provided limited predictive value for linear and polynomial regressions (up to R? of
30), a Random Forest model could predict high- versus low heart rate consistently
at above-chance level. In this model, the features which contributed most strongly
towards correct classification were blink rate, blink duration, and the median velocity
within fixations and saccades, and the saccadic peak velocity.

Interestingly, each of the features that contributed most strongly pertains to either
information regarding blinks, or regarding oculomotor movement (velocities and
amplitudes), and not so much to durations or counts of fixations and saccades. The
importance of blink rate and blink duration provides support for the suggested link
between an altered rate of eyeblinks and changes in arousal (Maffei & Angrilli, 2019;
Wood & Hassett, 1983) and changes in heart rate metrics (Nakano & Kuriyama, 2017).
At first sight, the relative importance of fixation velocity might be surprising, since
fixations are spatially stable. However, differences in fixation velocities may be the
result of physiological drift or microsaccades, sometimes referred to as fixational
drift or fixational eye movements (Rolfs, 2009). The occurrence of microsaccades has
been found to be positively coupled to heartbeat, and may thus explain the amount
of information captured in the fixation velocity variable (Ohl et al., 2016). The peak
and median velocity of saccades are fourth and fifth in the list of informative features,
which aligns with earlier literature which suggested that saccadic peak velocity
indicates mental effort (Di Stasi et al., 2010, 2013) and motivation (Muhammed et al,
2020) - two cognitive processes closely linked to modulations in arousal.

Feature importance, however, does not indicate specifically which aspect of a dis-
tribution provides the most information towards correct classification. This makes
it difficult to speculate about the direction of the effect of the included features,
further complicated by inconsistencies in the literature. For instance, microsaccades
occur more frequently with high mental effort in some tasks, but not in others (Pas-
tukhov & Braun, 2010; Siegenthaler et al., 2014), suggesting that the modulation of
eye movement and heart rate by the arousal system is highly task-dependent. This is
further evidenced by the fact that we find increased saccadic- and fixational velocities
in high heart rate periods, whereas it is usually found that saccadic and fixational
velocity are negatively correlated with arousal (Di Stasi et al., 2013; Siegenthaler et al,,
2014). While, except within velocity, no consistently different medians within features
were found between low- and high heart rate periods, it is remarkable that standard
deviations were consistently equal or higher when heart rate was low, as compared
to when it was high (with the exception of median saccade velocity). High arousal
levels could be associated with a reduction in variability in oculomotor behaviour, as
is the case with heart rate (Kazmi et al,, 2016).

Based on these findings, we speculate that heart rate is not only linked to fixational
eye movements (Ohl et al., 2016), but to oculomotor movements in general. This link
might come into place due to changes in the common underlying arousal system,
or merely as an effect of changes in blood pressure during the heartbeat cycle. Our
findings therefore suggest that a substantial portion of oculomotor behaviour is
linked to heart rate, and not only by top-down goals of the beholder (Kootstra et al,,
2020), or bottom-up visual features of the scene (Itti et al., 1998), as is commonly
assumed. To this end, other physiological indicators could be compared to oculomotor
metrics in their ability to predict heart rate. Because there is no unified definition of
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arousal, investigating the links between the aforementioned indicators would allow
to isolate more specific subcomponents of arousal, and improve our definition of
the term.

Speculating about neural underpinnings for a link between the oculomotor features
described here and heart rate, we see a potential role for the locus coeruleus,
a sympathetic center in the brain that acts antagonistically to parasympathetic
activation associated with heart rate variability (Mather et al., 2017). The noradrenergic
locus coeruleus affects oculomotor behavior mainly via its inputs to the superior
colliculus that is crucial in bringing about several oculomotor behaviours (Strauch
et al., 2022). Note that locus coeruleus-centered and superior colliculus-centered
circuits have been associated with differential attentional functions at the level of
the brain stem, including alerting and orienting (Strauch et al., 2022).
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