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Saliency models perform best for women’s and
young adults' fixations
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Sjoerd M. Stuit1 & Stefan Van der Stigchel1

Saliency models seek to predict fixation locations in (human) gaze behaviour. These are

typically created to generalize across a wide range of visual scenes but validated using only a

few participants. Generalizations across individuals are generally implied. We tested this

implied generalization across people, not images, with gaze data of 1600 participants. Using a

single, feature-rich image, we found shortcomings in the prediction of fixations across this

diverse sample. Models performed optimally for women and participants aged 18-29. Fur-

thermore, model predictions differed in performance from earlier to later fixations. Our

findings show that gaze behavior towards low-level visual input varies across participants and

reflects dynamic underlying processes. We conclude that modeling and understanding gaze

behavior will require an approach which incorporates differences in gaze behavior across

participants and fixations; validates generalizability; and has a critical eye to potential biases

in training- and testing data.
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The world provides us with rich potential visual input. The
immense amount of available information, combined with
the unevenly distributed photoreceptor cells of the retina

and the limited processing capacity of the visual system, neces-
sitates several steps of prioritization. The first, and perhaps most
important, of these steps determines how gaze, and with it visual
attention, is allocated across a given scene. The way the eyes are
rotated affects which visual information falls on the eyes’ highly
or lowly resolving parts, and herein lies the foundation of how
individuals see and perceive the world. Which aspects of a scene
are most salient - and thus determine where observers will likely
fixate - is therefore of crucial interest1.

In order to computationally model visual saliency, topographic
maps of image features such as local orientation, contrasts, spatial
frequencies, or colors are integrated - in other words features that
are of importance in early visual areas within the visual cortex.
Initial applications of these models were seen in computer vision,
namely the prioritization of highly informative locations to deal
with limited processing capacity of computers1. It was not long,
however, until saliency maps were translated back to vision:
Which locations of a scene, based on image features, will most
likely attract covert and overt shifts of attention and thus be
fixated to optimally use the brain’s processing power2. These
models can be understood as spatial distribution maps that
highlight salient over non-salient areas. In turn, such maps can be
compared to actual gaze data from benchmarking data sets3,4 and
improvements can be made to iteratively adapt models to become
ever closer to gaze data, thereby also improving understanding of
how low-level visual input might drive this behavior.

While the initial and seminal models were constructed by
considering visual features that are well known to be represented
in the early visual areas of the brain2, dozens if not hundreds of
models have since been proposed, some following similar
approaches, some semantically enhanced [e.g., ref. 5], and some
based on deep learning approaches instead [e.g., ref. 6].
Researchers in turn benchmark their models on empirical data
which usually contain fixations of a limited number of adult
participants [e.g., refs. 7–9] who view a very wide range of static
images without instruction [see4, for an overview]. For instance,
the influential and vast CAT2000 dataset10 contains free viewing
data of 120 participants (80 women, 40 men) aged 18–27 years
with each of 4000 images being viewed for 5 s by 24 participants.
This approach guarantees generalization across (static) stimuli.
Recent calls for more diverse samples in (psychological)
research11–13 - beyond the overrepresented participant pools of
most research universities12 - raise the question of how well such
findings may generalize across individuals rather than images.
Just as much as demographic biases in training data might bias
models, it may be asked whether saliency drives eye movements
uniformly over time; that is, whether models are as predictive for

the first as for intermediate or later fixations. Both questions can
only be studied with massive samples, as fixation maps of single
fixations, such as all second fixations, are otherwise too scarce to
allow for inferences. With the emergence of massive online stu-
dies, such generalizability issues are increasingly addressed for
other questions in psychology. Large samples, however, remain
scarce in eye tracking research. Whether the field of saliency
modeling is also affected by said sampling biases as one of the key
challenges of present-day psychology11 is therefore still unclear.

Here, we tested the generalizability of model predictions across
people and across fixations, not stimuli, and set out to uncover
possible biases in model predictions with regard to both gender,
age, and across fixations. To this end, we evaluated performance
of 21 saliency models, selected upon availability and their huge
influence on the field to infer conclusions on saliency mapping as
a general discipline. For each saliency model, performance was
assessed relative to a spatial distribution map of fixation locations
of n=2607 participants, including children, on a single image
(see Fig. 1). As further baselines, we employed (1) a central bias,
based on the assumption that participants fixate the center more
than the periphery14; (2) a meaning map15, constructed of relative
meaningfulness ratings for small patches of the stimulus; and
(3) a single observer baseline, the averaged predictivity of each
participant’s fixation locations for fixations of all other partici-
pants. Furthermore, we evaluated model performance across
fixations - in other words how well early, intermediate, and later
viewing behavior could be modeled. For analyses that relate
model performance to demographic details of participants, gaze
behavior of n= 1600 participants from 6 to 59 years of age and
highest credibility of logged demographics were used.

Results
Descriptive model performance. Normalized scanpath saliency
(NSS) scores were used to evaluate model performance, a measure
that has generally favorable properties and correlates highly to
other indicators of model performance16,17. The continuous
spatial distribution map of fixations of all participants yielded a
NSS of 0.709 relative to the discrete fixation locations of all
participants, effectively establishing the upper bound for any
model’s performance. Surprisingly, model performance was
higher for many models (e.g., SALICON, SalGAN DeepGazeII)
than for the meaning map (NSS= 0.382), which has been
described to outperform regular saliency models15. The central
bias had a prediction very close to chance level (NSS= 0.014) and
was outperformed by all but one of the evaluated saliency models;
the single observer was outperformed by most models. Perfor-
mance of individual models is given in Table 2 with absolute NSS
and percentage deviations in model performance scaled between
central bias and the overall fixation map.

Fig. 1 Stimulus and overlaid fixation map. a Stimulus presented to assess free viewing data and b spatial distribution map of fixation locations overlaid
with brighter colors indicating more fixations. Usable gaze data were obtained from n=2607 participants using an eye tracker and monitor which were part
of an installation at a science museum (see Supplementary Figure 1 for pictures of the setup). Collage made from licensed stock images from Shutterstock.
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Model performance across individuals. Models performed sig-
nificantly better at predicting fixation locations of women
(n=710) than of men (n=890; BF10= 244.904, t(20)= 4.779, p <
0.001, Cohen’s d= 1.043; see Fig. 2, Supplementary Figure 2 for
spatial distribution maps of fixation locations for men and
women, and Supplementary Table 3; for results on participants
who reported other gender, see Supplementary Table 4 and
Supplementary Figure 4). The average difference in predictions
across gender for all models (NSS= 0.017) closely corresponded
to the difference for the central bias (NSS= 0.018, Supplementary
Table 3).

Further differences in model performance were found across
age groups. Data were binned in nine groups, each spanning 6
years of age from 6-59, which ensured at least 34 participants per
bin (see Table 1 for demographics per bin). Model performance
was then averaged across age bin averages to account for class
imbalances in the grand average, and this was used as baseline for
across-age comparisons. Therefore this average, unlike the values
reported in Table 2, is not biased towards the groups with most
participants. Age biases across models were fairly consistent
(Fig. 2; Table 3, see Table 4 for t-tests and respective effect sizes
between bins). One age group revealed the clearest positive

deviation from average model performance: Those of the arguably
most oversampled population, corresponding to most college
students and young academics, respectively (18-29). This was
accompanied by generally less consistent or worse predictions for
other age bins. Note that, due to smaller group sizes, the age bins
6–11 and 54–59 warrant more caution before interpretation than
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Fig. 2 Model performance across demographic bins. Positive and negative values indicate better- and worse than average performance, respectively.
Individual data points represent NSS deviations from average model performance across age bins. a Deviations for men and women. b Deviations across
age bins. Gray dots and lines depict NSS deviations for individual models. ***: statistically significant at p < 0.001, ** at p < 0.01, * at p < 0.05. c NSS scaled
between single observers and fixation maps' NSS per age bin. Black diamonds represent average deviations alongside 95% confidence intervals. n=1,600.

Table 1 Demographics per age bin

Age Gender

Bin Sample size Mean Men (%) Women (%)

6–11 58 9.97 48.3 51.7
12–17 149 14.28 64.4 35.6
18–23 249 20.44 55.4 44.6
24–29 431 26.10 54.5 45.5
30–35 242 32.26 50 50
36–41 164 38.60 51.2 48.8
42–47 175 44.36 60.6 39.4
48–53 97 50.08 55.7 44.3
54–59 34 55.94 82.4 17.6
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the other age bins. Notably, variation in model performance was
relatively large for under-aged (<18 year-old) participants
compared to other participants. Again, the central bias showed
a largely similar tendency to the overall model biases, in line with
findings reported earlier on a smaller selection of models and age
groups18,19. Spatial distribution maps of fixation locations are
given per age bin in Supplementary Figure 2; absolute NSS per
model and baselines are given in Supplementary Table 1.
Individual predicted maps per model (Supplementary Fig. 6),
and deviations between models’ predictions and actual fixation
locations (Supplementary Fig. 7) are given in the supplementary
information. The degree of biases across age became even more
apparent with NSS scaled between single observers and fixation
maps’ NSS per age bin (Fig. 2c). Differences were striking here,
again with best performances for participants in young adulthood
(Fig. 2). Differences as a function of age were substantial
(F(1.699,33.971)= 38.269, p <0.001, η2= 0.657) and were highly
significant between most age bins. For instance, performance for
children aged 6–11 differed from performance of all adults (all p <
0.001) except those in the oldest bin (see Table 4 for full post-hoc
t-tests).

Model performance across fixations. Model performance was
characterized by substantial variation in NSS, but revealed that
fixations are predicted differently well over time. Here, the fixa-
tion map, reflecting an upper bound, showed much higher NSS
scores early than later on, likely because fixations were much

more focal for early viewing (see Fig. 3d). Models predicted the
subset of early fixations generally better than when consecutive
fixations were added, but only in absolute NSS scores (Fig. 3a;
e.g., first vs. ninth fixation t(20)= 5.881, p < 0.001, 95% CI=
[0.692, 1.857]). When scaled to the maximum achievable NSS,
many models improved relative to this maximum as consecutive
fixations were added, given that the NSS scores of the fixation
map and central bias also decreased (Fig. 3b, first vs. ninth
fixation t(20)=−6.634, p < 0.001, 95% CI= [−2.057, −0.821]).
Relative performances across models differed as a function of the
cumulative fixations made - e.g., SAM20 performed very well on
the first two fixations in comparison to the overall benchmark,
which was best predicted by current, leading deep learning
models such as SALICON, SalGAN, and DeepGazeIIE21–23. This
variability showed in different model rank orders between the
first few fixations, relatively later fixations, or all 18 fixations,
respectively (corresponding to the leftmost and the rightmost
rank order in Fig. 3b). Of course, a map of cumulative fixations
contains more information whereas a map for only the first
fixation is arguably more sparse - despite already 2607 fixations
contributing to it. Are differences in performance across fixations
therefore driven by data sparsity? Fixation maps for only the first
and the ninth fixation, respectively, (Fig. 3d) compared with the
overall map of all fixations (Fig. 1), showed markedly different
patterns as function of early- versus late viewing behavior: Fixa-
tion maps were highly focal for the first and much more spread
out for later fixations, data sparsity cannot have driven these
effects. The benchmark of models per fixation (Fig. 3c) further
showed relatively worse performance for early fixations (first vs.
ninth fixation t(20)=−4.679, p < 0.001, 95% CI= [−1.544,
−0.482]). Around six to ten fixations marked the point of best
performance, which roughly matches the overall number of
fixation clusters observed. NSS scaled between central bias and
fixation map then dropped again across models. This challenges
the current approach of optimizing saliency models on just one
fixation map per image - in fact, what attracts gaze early on might
be substantially different from what attracts gaze after a few
fixations or extended viewing.

Discussion
Here we set out to investigate how well saliency maps, models
that have been proposed to predict the deployment of visual
attention, and by extension fixation locations, generalize across
individuals and the number of fixations. Using a sample of 2607
participants and 21 highly influential saliency models, gender and
age biases in model performance were found for the subset of
1600 participants with credible demographics. Specifically, pre-
dictions were better for women and adults aged 18–29. These
demographics (women, 18-29), perhaps incidentally, best repre-
sent those of the majority of participants in psychological
research in general (predominantly younger adult women), as
well as in the vast majority of benchmarking data4,10. Overall, a
large portion of the biases in predictions across demographic
groups followed relative differences in prediction of the central
bias baseline, in line with previous work with smaller samples and
more distinct age groups18,19,24,25.

Besides demographic-based differences, model performance
differed as a function of which fixation was to be predicted. Here,
models only performed well for early fixations in absolute NSS,
but actually worse when scaled with the maximum achievable
NSS. Our sample allowed us to study how model performance
evolves as a function of the number of fixations, as maps are not
sparse; even if only the first or ninth fixation is used as a basis, it
contains information from 2607 fixations. Worse predictions for
early and later fixations compared to intermediate (i.e., sixth to

Table 2 Performance of visual saliency models and
baselines.

Model NSS Authors Improvement (%)

Baselines
Fixation map 0.709 100.00
Central bias 0.014 Tatler14 0.00
Single
observer

0.176 23.32

Meaning map 0.382 Henderson &
Hayes15

52.97

Models
SALICON 0.462 Jiang et al.21 64.45
SalGAN 0.434 Pan et al.22 60.42
DeepGazeIIE 0.411 Linardos et al.23 57.15
DeepGazeII 0.408 Kümmerer et al.35 56.78
QSS 0.350 Schauerte &

Stiefelhagen45
48.37

IMSIG 0.342 Hou et al.46 47.20
DeepGazeI 0.339 Kümmerer et al.47 46.83
DVA 0.307 Hou & Zhang48 42.13
SSR 0.280 Seo & Milanfar49 38.35
SAM 0.279 Cornia et al.20 38.10
ICF 0.269 Kümmerer et al.50 36.70
AIM 0.255 Bruce & Tsotsos51 34.75
IKN 0.206 Itti et al.1 27.66
RARE2012 0.200 Riche et al.52 26.79
BMS 0.194 Zhang & Sclaroff53 25.88
CAS 0.172 Goferman et al.54 22.71
GBVS 0.171 Harel et al.55 22.65
SUN 0.166 Zhang et al.56 21.85
FES 0.060 Rezazadegan

Tavakoli et al.57
6.72

LDS 0.043 Fang et al.58 4.29
CVS −0.076 Erdem & Erdem59 −12.86

Model performance (NSS, Normalized Scanpath Saliency score) for baselines and models are
given as rows. Negative numbers denote worse than chance performance. The Improvement
column denotes relative performance between central bias (0%) and fixation map (100%) in %
NSS.
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tenth) fixations highlight the importance of more closely defining
whether earlier or later viewing behavior is modeled. One possi-
bility to account for the variability in prediction quality across
fixations lies in adjusting how saliency models apply thresholds:
For first fixations, only the few most focal locations could be
emphasized by greedier thresholds to represent the focal distribu-
tion of fixation locations observed early on. For subsequent fixa-
tions, a more liberal approach might be employed, allowing more
spread-out predictions - as observed for intermediate or later
fixations. The here reported data further suggest that different
models might capture different visuo-attentional processes -
with some models being more predictive of early fixations
[e.g.,20] and others being better at predicting later fixations
[e.g.,21,23]. If the goal is to define which part of a scene is fixated
first, particular models may perform best and thus be the method of
choice. If the goal is to predict which parts of a scene will be fixated
eventually, however, different models that weigh objects and
semantic information more strongly are to be recommended. This
view could resolve a number of outstanding debates on whether
low-level features or semantics drive gaze behavior most
strongly5,15,26–29. We speculate that both accounts have their merit:
The answer could depend on the viewing duration and the
number of objects in a scene. Remarkably, fixation maps were
very focal for the first few fixations. As soon as the number of
fixations approached the number of bigger objects in our scene,
model performance did not notably change further when using
a cumulative fixation map, indicating that participants even-
tually fixated most objects, but in differing sequences. Very late

fixations, in turn, could disperse even further and be captured
worse as a consequence. Saliency models are optimized using
cumulative fixation maps obtained from several seconds of free
viewing. This practice might have introduced bias, as later
fixations are disproportionately weighed in these maps relative
to the initial two or three fixations. The findings and account
put forward here could (partially) explain differences across
benchmarking datasets and results4. A straightforward predic-
tion would be that benchmarks that use gaze data on images
with a short viewing duration favor models that prominently
weigh relevant low-level features [possibly such that are com-
mon in faces5,27], whilst benchmarks with gaze data obtained
from viewing behavior over a longer time favor models that
weigh semantic content more strongly.

Taken together, the reported findings put the current approach
of evaluating and improving models into question, which is
predominantly to design and benchmark models around fixation
maps constructed from several seconds of free viewing by college
student participants. More generally, the present findings reveal
that models of psychological processes - even as fundamental as
low-level visual behavior - can be affected by systematic and
substantial biases introduced via training and benchmarking
datasets. Proper modeling and understanding of human spatial
gaze behavior will require an approach that incorporates diverse
samples, if the aim of said models is to predict behavior of more
than just college students. Furthermore, saliency models could
improve further by addressing effects of early versus later fixa-
tions, or this issue should be explicitly addressed in limitations of

Table 3 Differences in model performance split by age groups.

Deviation in model performance relative to average model performance across age bins

Model 6–11 12–17 18–23 24–29 30–35 36–41 42–47 48–53 54–59

Baselines
Fixation map 0.186 0.028 0.003 −0.103 −0.105 −0.105 −0.065 −0.018 0.179
Central bias −0.031 0.007 −0.02 0.033 0.014 −0.006 −0.029 0.039 −0.008
Single observer 0.071 0.026 0.034 −0.009 −0.021 −0.037 −0.016 −0.021 −0.029
Meaning map −0.029 −0.024 0.042 0.047 0.015 −0.002 −0.006 −0.006 −0.037

Models
RARE2012 −0.019 −0.035 0.003 0.044 0.015 0.006 0.003 0.034 −0.053
SalGAN −0.007 −0.068 0.069 0.057 0.004 0.006 0.024 0.006 −0.087
DeepGazeIIE 0.004 0 0.048 0.043 0.009 −0.031 −0.014 0.015 −0.072
SALICON −0.006 −0.012 0.071 0.039 0.003 −0.011 0.008 0.024 −0.115
−DVA −0.006 −0.061 0.028 0.054 0.019 −0.008 0.02 0.015 −0.06
FES 0.008 −0.029 −0.004 0.04 0.021 −0.001 −0.014 0.016 −0.036
QSS 0.037 −0.034 0.035 0.036 0.01 −0.024 0.004 0.009 −0.069
SSR 0.005 −0.046 0.045 0.026 0.031 0.005 −0.006 0.028 −0.089
CVS 0.02 0.011 −0.015 0.01 0.013 −0.004 −0.023 0.008 −0.024
IMSIG 0.013 −0.035 0.036 0.044 0.03 −0.011 0.006 0.017 −0.096
LDS 0.018 0.021 0 0.021 0.001 −0.013 −0.03 0.01 −0.031
ICF 0.001 0.024 0.017 0.037 0.007 −0.041 −0.018 0.031 −0.059
GBVS −0.022 0.015 −0.005 0.051 0.001 −0.014 −0.026 0.044 −0.043
CAS 0.023 0.017 0.004 0.026 0.007 −0.019 −0.02 0.033 −0.068
SUN 0.018 −0.018 −0.004 0.018 0.011 −0.024 −0.018 0.041 −0.021
DeepGazeI 0.003 −0.008 0.044 0.046 0.009 −0.025 −0.008 0.027 −0.087
AIM 0.024 0.005 0.01 0.017 0 −0.049 −0.022 0.038 −0.025
SAM −0.001 0.082 0.033 0.015 −0.04 −0.03 −0.019 0.033 −0.073
DeepGazeII −0.009 −0.041 0.038 0.064 0.014 −0.012 0.001 0.011 −0.065
IKN −0.014 −0.024 0.006 0.059 0.014 −0.008 −0.017 0.035 −0.053
BMS 0.041 0.007 0.027 0.026 0.017 −0.016 −0.02 0.019 −0.101

Summary statistics (models only)
Mean deviation −0.006 −0.011 0.023 0.037 0.009 −0.015 −0.009 0.024 −0.063
Bayes Factor10 0.739 0.567 92.727 >5000 6.982 258.279 4.050 >5,000 >5,000

Deviations (NSS) per age bin from the average across age bins. Negative numbers indicate worse model performance compared to other age bins, whereas positive numbers indicate better performance
compared to other age bins. Summary statistics (excluding baselines) are given in the bottom two rows (bold: p < 0.05; inferential t-tests in Supplementary Table 2, tests for contrasts between age bins
in Table 4).
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models. Different models might be used to account for these
differences or models could incorporate adjustable options: For
whom and for when should fixations be predicted? Knowledge
about developmental differences in sampling behavior and sal-
iency computations18,25,30–32 could be incorporated here, as well
as findings into differences in fixations across viewing duration
[e.g., refs. 33,34].

Most models outperformed the central bias, in line with several
benchmarking results4. However, many models already incor-
porate a central bias and the image at hand features many spread-
out objects. Generally, more recent models performed best at
predicting the overall fixation map (i.e., including data of all
participants and fixations), some of which are currently also
leading in benchmarks across stimuli [e.g., ref. 23]. Indeed, deep
learning-based models21–23,35 generally outperformed more tra-
ditional and interpretable models which are foremost centered
around low-level image feature computations. However, these
deep-learning models still suffered from qualitatively similar
limitations regarding generalizability across individuals and
fixations. Furthermore, the meaning map was outperformed by
several models, in contrast to initial findings15, reminiscent of
recent criticism29, but see Henderson et al.26. Meaning maps
could possibly be advanced further by ensuring high

correspondence between the demographics of raters and partici-
pants whose fixations are to be predicted.

Limitations. Naturally, the sample put forward here, while vast, is
in turn affected by sampling biases. For example, children need to
be willing to wait and focus, older adults need to have sufficient
vision to participate. Which further differences between people,
beyond gender and age, are relevant when it comes to saliency
maps remains to be determined. With this first step, we hope to
stimulate research into this, including into non-western popula-
tions in the field of saliency mapping, as suggested in many areas
of psychology11,13,36. As a way forward, to overcome the biases
uncovered here, we provide the present database to help improve
across-participant and across-fixation generalizations and will
supply it with additional data as long as the exhibition remains
active. Replications of presently reported findings across multiple
images would be desirable, for instance using other large scale
data collections such as described here. Other limitations to be
kept in mind lie in the less controlled setup than used in most
common benchmarking data sets, or limited possible inferences
on gaze behavior of participants with non-binary gender. The
practical implications here are simple: no gender should be made

Table 4 Contrasts for percentage explained NSS of the explainable NSS between all age bins.

95% CI

Comparison Mean difference t p (Bonferroni) 95% CI (Lower) 95% CI (Upper)

6–11 12–17 −3.889 −2.548 0.424 −8.854 1.077
18–23 −8.191 −5.367 <0.001 −13.157 −3.225
24–29 −19.075 −12.499 <0.001 −24.041 −14.11
30–35 −16.039 −10.509 <0.001 −21.004 −11.073
36–41 −14.151 −9.272 <0.001 −19.117 −9.185
42–47 −11.345 −7.434 <0.001 −16.311 −6.379
48–53 −16.375 −10.73 <0.001 −21.341 −11.409
54–59 −3.811 −2.497 0.487 −8.777 1.154

12–17 18–23 −4.302 −2.819 0.195 −9.268 0.663
24–29 −15.187 −9.951 <0.001 −20.153 −10.221
30–35 −12.15 −7.961 <0.001 −17.116 −7.184
36–41 −10.262 −6.724 <0.001 −15.228 −5.296
42–47 −7.457 −4.886 <0.001 −12.423 −2.491
48–53 −12.487 −8.182 <0.001 −17.452 −7.521
54–59 0.077 0.051 1 −4.889 5.043

18–23 24–29 −10.885 −7.132 <0.001 −15.85 −5.919
30–35 −7.848 −5.142 < 0.001 −12.813 −2.882
36–41 −5.96 −3.905 0.005 −10.926 −0.994
42–47 −3.154 −2.067 1 −8.12 1.811
48–53 −8.184 −5.363 <0.001 −13.15 −3.218
54–59 4.379 2.87 0.168 −0.586 9.345

24–29 30–35 3.037 1.99 1 −1.929 8.003
36–41 4.925 3.227 0.055 −0.041 9.891
42–47 7.73 5.065 <0.001 2.764 12.696
48–53 2.7 1.769 1 −2.265 7.666
54–59 15.264 10.002 <0.001 10.298 20.23

30–35 36–41 1.888 1.237 1 −3.078 6.854
42–47 4.693 3.075 0.089 −0.273 9.659
48–53 −0.337 −0.221 1 −5.302 4.629
54–59 12.227 8.012 <0.001 7.261 17.193

36–41 42–47 2.805 1.838 1 −2.16 7.771
48–53 −2.224 −1.458 1 −7.19 2.741
54–59 10.339 6.775 <0.001 5.373 15.305

42–47 48–53 −5.03 −3.296 0.044 −9.996 −0.064
54–59 7.534 4.937 <0.001 2.568 12.5

48–53 54–59 12.564 8.233 <0.001 7.598 17.529

Contrasts are for data as given in Fig. 2c and Table 3 across age bins. Data distribution was assumed to be normal but this was not formally tested for these contrasts.
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the default option and ’prefer not to say’ options should be given
to not obscure findings. Whilst we did not find qualitative dif-
ferences in findings for two different smoothing kernel sizes to
create the fixation maps, more extreme choices for kernels or
flexible central biases might affect the here reported bounds and
thus findings.

Conclusions. Past findings [e.g., on the central bias out-
performing many models14] could have been taken to cast doubt
on the general usefulness of saliency modeling. Such criticisms,
however, have led to even increased efforts to develop more
powerful models, e.g., by incorporating the central bias. The here
identified systematic challenges to saliency modeling - general-
izability across individuals and which fixation is to be predicted -
might require new approaches in turn, for instance by incor-
porating information besides low-level image features [see also
ref. 37 for related calls] in order to make the next leap forward
happen. If models can only generalize to overall fixation maps
across images4, but fail at generalizing across earliest fixations or
work best only for certain demographic samples, different models
might be needed to predict different (groups of) individuals and
visuo-attentional processes. Or, even better, models might
incorporate which fixations are to be predicted - distinctions for
the demographics and the number of the fixation could hereby set

the path for much more powerful models. We argue that visual
saliency should be considered a dynamic, interactive, and inte-
grative result of low-level image features [e.g.,1], as well as
semantic information [e.g., refs. 5,37] or meaning maps15 under
the consideration of the individual differences that have been
associated with gaze behavior [e.g., refs. 30,31].

Methods
The study was approved by the Ethics Review Board of the
Faculty of Social Sciences at Utrecht University.

Participants and data exclusion. Overall, n=2,607 valid free
viewing gaze data sets were obtained, using an installation at the
NEMO Science Museum, Amsterdam, which featured a metal box
with a screen and an eye tracker inside which participants looked
into. All analyses not related to demographics were performed on
all 2607 data sets (MAge= 28.79, men= 50.13%, women= 42.9%;
non-binary= 6.97%). For analyses relating to demographics, data
sets were only considered if no periods of more than 5 s of lost
gaze position were recorded over the duration of the whole
procedure (including entering demographics). For data sets
adhering to this requirement, it is highly unlikely that the parti-
cipants left the recording between free viewing and entering their
demographics. Data sets were further excluded from any
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visualization as in b, but per fixation instead of cumulative fixations. d Fixation map for only the 1st fixation shows a much more focal distribution of
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demographic-linked analyses if the default options (non-binary
gender, year 2000 as year of birth) were not changed by the
participant, resulting in n=1600 participants with demographics
of high credibility (MAge= 29.82, men= 55.6%, women= 44.4%;
see Table 1 for detailed demographic information). N=91 par-
ticipants indicated non-binary gender across the 6-59 age range,
but given that there was no option for ’prefer not to say’, these
data are only given in the Supplement and have to be interpreted
with caution.

Statistics and reproducibility. All statistical tests reported were
two-sided. Tests are detailed alongside results. Bayesian tests use
default JASP priors. The study was not preregistered.

Apparatus, stimuli, and procedure. Gaze was logged (asyn-
chronously) at 60 Hz using a Tobii Eye Tracker 4C. This eye
tracker is suited for this research question and setup. In general
however, as the Tobii 4C filters the data for its intended use
case (gaze interaction), Tobii advises against using it for research.
A 27", 1920 × 1080 px monitor with a maximum luminance of
300 cd/m2 was used for stimulus presentation, located at 80 cm
distance from the eyes to the screen (50 × 24 degrees visual angle).
A metal box around screen and tracker shielded the field of view
from other visual stimulation. Participants could either stand, sit
on a chair, or stand on a chair to be able to see the monitor and
participate. Other than that, the setup was not height adjustable.
Auditory information was given exclusively after free viewing via
two loudspeakers positioned close to the participants’ ears. See
Supplementary Figure 1 for pictures of the setup.

Participants were required to look at a central circle that
gradually filled to start the experiment and perform a five-point
calibration of the eye tracker. Participants were presented with a
full-screen collage image (Fig. 1) for 10 s of free viewing without
instruction. The image was constructed so that it would include a
wide variety of objects, both inanimate and animate, both facing
or not facing the beholder, as well as free spaces with low
information (i.e., empty sea or sky). Participants could decide on
whether or not to donate their data by fixating a laterally
positioned ’yes’ or ’no’ button respectively.

Upon giving consent, participants were prompted to indicate
their gender by gazing at a central (non-binary), left (man), or
right (woman) circle. Subsequently, year of birth could be
entered, with 2000 as default option. This year could be iteratively
decreased or increased by gazing at a circle on the left or on the
right, respectively.

Data quality and preprocessing. Eye tracking data quality can be
assessed by precision, accuracy, and data loss38,39. While accuracy
cannot be assessed with the current setup, precision, calculated as
in Hooge et al.40, was Mdn= 0.68∘ (SD= 0.28∘), loss was
M= 0.8% (SD= 2.4%). These are reasonable values given the
special nature of the setup (see SI Data quality for more infor-
mation and Supplementary Figure 5). Neither precision nor loss
have visibly driven results across demographic groups. Fixation
candidates were detected from raw gaze data with an algorithm
specifically built for noisy data41. Fixation candidates were dis-
carded if shorter than 60 ms, or merged if intermittent saccade
candidates were smaller than 1 degree of visual angle in ampli-
tude. This procedure has been demonstrated to prevent event-
detection related biases42. Given that participants needed to look
at the center of the screen to start free-viewing, all fixations with
onsets before the start of free-viewing were removed from the
dataset. The following eighteen fixations were considered for
analyses to account for differential fixation counts of participants
(this equated to M= 6.906 s of free viewing). Participants with

fewer than eighteen fixations (n=117), thus deviating more than
1.5 median absolute deviation from the median, were excluded
resulting in the total of 2607 participants (Number of fixations
per participant: Mdn= 25.0 MAD= 4.45). Fixations that were
located outside of the bounds of the screen of the experimental
setup were excluded.

Baseline spatial distribution maps. To evaluate the performance
of the predictions obtained from 21 saliency models tested here,
four different baselines were constructed. (1) A map of all actual
fixation locations served as the upper bound for the performance
of any model (comparison between the binary array of fixation
locations and its smoothed counterpart). This fixation map was
constructed from fixation locations by applying a Gaussian filter
(SD= 1 degree of visual angle) to the fixation map, effectively
making it continuous17,43 - in other words, discrete fixation
locations were blurred over with this kernel. This approach allows
to construct regions rather than pixels for fixation determination
and acts as regularization for potential small scale measurement
error17. (2) A meaning-map, a model created from successive
ratings of small patches of the image by n=59 participants served
as gold standard model15, possibly best incorporating informa-
tion about objects and semantics, as previously proposed for
computational models5. To create the meaning map, the image
was split into overlapping patches with diameters of 1.5, 3 and 7
degrees of visual angle. These patches were then rated for
meaningfulness by n=59 participants (MdnAge= 25 years,
SD= 7.399 years; men: 39, women: 19, non-binary: (2), recruited
via Prolific without restriction regarding demographics, using
Gorilla in an online experiment. This experiment took about
15 minutes to complete during which participants had to rate 200
patches each. Participants were each rewarded with 9 euros. (3) A
Gaussian central bias14, skewed to the aspect ratio of the screen
(SD= screen half dimensions), served as the baseline perfor-
mance that should be achieved by any model. Effectively, the
central bias lets saliency be maximal at the center with declining
saliency towards the edges of the screen. Central biases can
outperform saliency maps14 and are therefore incorporated
in many of the more recent, here evaluated, models [e.g.,23,35].
(4) Lastly, a single observer model expressed how well one parti-
cipant’s gaze behavior matched gaze behavior of all other parti-
cipants. This procedure was repeated over all participants (similar
to leave-one-out cross-validation), and scores from all iterations
were then averaged.

Evaluation metric. A multitude of evaluation metrics for saliency
maps have been put forward [see refs. 17,43, for reviews] of which
Normalized Scanpath Saliency (NSS) was used here. NSS corre-
lates highly to other metrics and has generally favorable prop-
erties as it requires minimal prior assumptions16,17. NSS was
extracted per model by first z-standardizing the respective sal-
iency map, and overlaying it with the binary map of discrete
fixation locations. For each fixated pixel, the z-score of the cor-
responding pixel was taken from the saliency map and a grand
mean was calculated over those values. All maps (baselines or
model predictions) were evaluated against the discrete fixation
locations. For the single observer model, discrete fixation loca-
tions of one participant were evaluated against the blurred fixa-
tion map of all other participants. As such, NSS accounts for the
relative saliency of regions as predicted by a given saliency map,
not absolute saliencies that differ between models17,44. False
positives and false negatives are equally weighed, and (nonbound)
positive NSS scores indicate above chance-level performance,
whereas negative NSS scores indicate worse than chance perfor-
mance. As NSS is reduced to one score, it does not indicate which
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regions drive better or worse than chance performance. For this
reason, graphical representations of the delta between predicted
models and the spatial distribution map of fixation locations are
given in Supplementary Figs. 6 and 7.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All code and data are available via the Open Science Framework https://osf.io/sk4fr/,
https://doi.org/10.17605/OSF.IO/SK4FR.

Code availability
All code and data are available via the Open Science Framework https://osf.io/sk4fr/,
https://doi.org/10.17605/OSF.IO/SK4FR.
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